-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictUsingROM.py
158 lines (130 loc) · 5.78 KB
/
predictUsingROM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
Predict using the trained ROM
"""
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.models import load_model
import os
import pyvista as pv
tf.random.set_seed(1234)
font = {'size': 18, 'family': 'DeJavu Serif', 'serif': ['Palatino']}
plt.rc('font', **font)
params = {'legend.fontsize': 14, 'lines.markersize': 4}
plt.rcParams.update(params)
plt.rc('text', usetex=True)
def useCPUforTraining(switch):
if switch:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = ""
elif not switch:
print("Using GPU : Nvidia M1200\n")
else:
print("Invalid option!!")
useCPUforTraining(True)
# Multistep predictions function
def multistep_predict(latest_model, tstart, tstop, starting_weights, BCs):
n_pred_wts = list()
times_ = list()
if tstart < 0: # or tstop > BCs.shape[0] - tstart:
print("Check tstart and tstop\n")
elif tstart <= tstop:
x_i_minus_1 = starting_weights
for i in range(tstart, tstop, ): # int((tstop - tstart) / 70)):
print(i)
times_.append(i)
x_i_minus_1 = x_i_minus_1.reshape([1, -1])
x_i_minus_1 = np.expand_dims(x_i_minus_1, axis=[1])
y_pred_i = latest_model.predict(x_i_minus_1)
n_pred_wts.append(y_pred_i) # y -> 0
x_i_minus_1 = np.hstack([np.squeeze(y_pred_i), BCs[i, :]])
if i == BCs.shape[0] - 1: # detect last row --> predict last of the ys
x_i_minus_1 = x_i_minus_1.reshape([1, -1])
x_i_minus_1 = np.expand_dims(x_i_minus_1, axis=[1])
y_pred_i = latest_model.predict(x_i_minus_1)
n_pred_wts.append(y_pred_i)
else:
print('\nCannot predict when tstart >= tstop --> Correct it!')
n_pred_wts = np.reshape(n_pred_wts, [len(n_pred_wts), -1])
return n_pred_wts, np.array(times_)
def denormalize(y_pred_):
rbs, mms = rbs_wts, mms_wts
mms_y_pred = mms.inverse_transform(y_pred_)
rbs_y_pred = rbs.inverse_transform(mms_y_pred)
state_y_pred = pca_.inverse_transform(rbs_y_pred).T
return state_y_pred
def saveReconMesh(vlwts, totalsteps, simname, vars_present, var_shape, currentpath, saveMesh=1):
if saveMesh:
smesh = pv.read(currentpath + "/analysis/sample.vtu")
# indices for point and cell data
pidx = [x for x in range(0, (len(vars_present[0]) + 1) * var_shape[0][1], var_shape[0][1])]
cidx = [x for x in
range(pidx[-1], (len(vars_present[1]) + 1 + var_shape[0][0]) * var_shape[1][1], var_shape[1][1])]
pcidx = np.hstack([pidx, cidx[1:]])
for tstep in range(vlwts.shape[0]):
singleset = denormalize(vlwts[tstep, :].reshape(1, -1))
print("Writing {}th step out of {} steps".format(tstep, totalsteps))
changemesh = smesh.copy()
for j, var_ in enumerate(vars_present[0] + vars_present[1]):
if j < len(vars_present[0]):
changemesh.point_data[var_] = singleset[pcidx[j]:pcidx[j + 1], 0]
elif j >= len(vars_present[0]):
changemesh.cell_data[var_] = singleset[pcidx[j]:pcidx[j + 1], 0]
if tstep > 0:
savethis = currentpath + "/recon" + "/Forecast_" + simname + "_{:04d}.vtu".format(tstep)
changemesh.save(savethis)
return None
# ----------------------------------------------------------------------------------------------------------------------
# Create save folders
work_folder = os.getcwd()
if not os.path.exists(work_folder + '/recon/'):
os.makedirs(work_folder + '/recon/')
# Load BCs corresponding to the "Fast" case
# bc_ = work_folder + "/analysis/Fast.txt"
lenOfSim = "Fast"
# bcvals_ = np.loadtxt(fname=bc_, delimiter=" ")
bcvals_ = np.load(work_folder + "/analysis/fast.npy")
bcvals_shift = np.vstack([bcvals_[:, 3], bcvals_[:, 1], bcvals_[:, 2], bcvals_[:, 0]]).T
bcvals_shift = bcvals_shift[:600000, :]
# Load the initial weights
start_wts_ = np.load(work_folder + "/analysis/startwts.npy").reshape(-1, 1)
pca_ = np.load(work_folder + "/analysis/u/pca_.npy", allow_pickle=True)[0]
sim101 = pca_.transform(start_wts_.T)
# Load other prerequisites
state_vars = np.load(work_folder + '/normalized/state_.npy', allow_pickle=True)
wts = state_vars[0]
rbs_wts = state_vars[2]
mms_wts = state_vars[3]
rbs_bcs = state_vars[4]
mms_bcs = state_vars[5]
simnames = state_vars[6]
# Load trained model
rnn = load_model(filepath=work_folder + "/analysis/rnn_permute_59_.h5", compile=False)
# Preparing and structuring the BCs for prediction
bcs_normalised = mms_bcs.transform(rbs_bcs.transform(bcvals_shift))
present = bcs_normalised[:-1, :]
future = bcs_normalised[1:, :]
bcs_ori = np.hstack([present, future])
bcs = bcs_ori[np.arange(0, bcs_ori.shape[0], 3), :]
# Simulate fast case
startwts = np.hstack([sim101[0, :], bcs[0, :]])
# Call the predictor
forecast_moderate, times_moderate = multistep_predict(latest_model=rnn,
tstart=1, tstop=bcs.shape[0] - 1,
starting_weights=startwts,
BCs=bcs)
forecast_moderate = forecast_moderate[np.arange(0, forecast_moderate.shape[0], int(forecast_moderate.shape[0] / 60))]
print("Weights predicted!!")
# Load auxiliary variables
varnames = np.load(work_folder + "/analysis/varnames.npy", allow_pickle=True)
varshape = np.load(work_folder + "/analysis/varsShape.npy", allow_pickle=True)
varshape[0][1] = varshape[0][1] - 2
varshape[1][1] = varshape[1][1] - 2
"""Save Meshes"""
saveReconMesh(forecast_moderate,
np.max(times_moderate),
lenOfSim,
varnames,
varshape,
work_folder)
print("Done!")