-
Notifications
You must be signed in to change notification settings - Fork 318
/
Copy pathextract_features.py
70 lines (65 loc) · 2.57 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
from PIL import Image
import torchvision.transforms as T
import timm
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
import os
import argparse
import json
from tqdm import tqdm
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, default='images')
parser.add_argument('--output_dir', type=str, default='vision_features')
parser.add_argument('--img_type', type=str, default="vit", choices=['detr', 'vit'], help='type of image features')
args = parser.parse_args()
return args
def extract_features(img_type, input_image):
if img_type == "vit":
config = resolve_data_config({}, model=vit_model)
transform = create_transform(**config)
with torch.no_grad():
img = Image.open(input_image).convert("RGB")
input = transform(img).unsqueeze(0)
feature = vit_model.forward_features(input)
return feature
elif img_type == "detr":
transform = T.Compose([
T.Resize(224),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
with torch.no_grad():
img = Image.open(input_image).convert("RGB")
input = transform(img).unsqueeze(0)
feature = detr_model(input)[-1]
return feature
if __name__ == '__main__':
args = parse_args()
print("args",args)
all_images = os.listdir(args.data_root)
tmp = []
name_map = {}
all_images.sort(key=lambda x:int(x))
print(len(all_images))
if args.img_type == "vit":
vit_model = timm.create_model("vit_large_patch32_384", pretrained=True, num_classes=0)
vit_model.eval()
elif args.img_type == "detr":
detr_model = torch.hub.load('cooelf/detr', 'detr_resnet101_dc5', pretrained=True)
detr_model.eval()
for idx, image in enumerate(tqdm(all_images)):
if idx % 100 == 0: print(idx)
if os.path.exists(os.path.join(args.data_root, image, "image.png")):
curr_dir = os.path.join(args.data_root, image, "image.png")
else:
curr_dir = os.path.join(args.data_root, image, "choice_0.png")
feature = extract_features(args.img_type, curr_dir)
tmp.append(feature.detach().cpu())
name_map[str(image)] = idx
res = torch.cat(tmp).cpu()
print(res.shape)
torch.save(res, os.path.join(args.output_dir, args.img_type +'.pth'))
with open(os.path.join(args.output_dir, 'name_map.json'), 'w') as outfile:
json.dump(name_map, outfile)