-
Notifications
You must be signed in to change notification settings - Fork 318
/
Copy pathextract_caption.py
32 lines (26 loc) · 1.1 KB
/
extract_caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
from PIL import Image
import os
from tqdm import tqdm
from lavis.models import load_model_and_preprocess
import json
# loads InstructBLIP model
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
model, vis_processors, _ = load_model_and_preprocess(name="blip2_vicuna_instruct", model_type="vicuna7b", is_eval=True, device=device)
data_root = "data/images"
output_dir = "data/instruct_captions.json"
all_images = os.listdir(data_root)
all_images.sort(key=lambda x:int(x))
name_map = {}
for image in tqdm(all_images):
if os.path.exists(os.path.join(data_root, image, "image.png")):
curr_dir = os.path.join(data_root, image, "image.png")
else:
curr_dir = os.path.join(data_root, image, "choice_0.png")
raw_image = Image.open(curr_dir).convert("RGB")
# prepare the image
image_features = vis_processors["eval"](raw_image).unsqueeze(0).to(device)
output = model.generate({"image": image_features, "prompt": "Write a detailed description."})
name_map[str(image)] = output
with open(output_dir, 'w') as outfile:
json.dump(name_map, outfile, indent=2)