-
Notifications
You must be signed in to change notification settings - Fork 0
/
hclust.R
276 lines (259 loc) · 9.63 KB
/
hclust.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# File src/library/stats/R/hclust.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
## Hierarchical clustering, on raw input data; we will use Euclidean
## distance. A range of criteria are supported; also there is a
## storage-economic option.
##
## We use the general routine, `hc', which caters for 7 criteria,
## using a half dissimilarity matrix; (BTW, this uses the very efficient
## nearest neighbor chain algorithm, which makes this algorithm of
## O(n^2) computational time, and differentiates it from the less
## efficient -- i.e. O(n^3) -- implementations in all commercial
## statistical packages -- as far as I am aware -- except Clustan.)
##
## Clustering Methods:
##
## 1. Ward's minimum variance or error sum of squares method (using raw d) -> "ward.D"
## 2. single linkage or nearest neighbor method.
## 3. complete linkage or diameter.
## 4. average linkage, group average, or UPGMA method.
## 5. McQuitty's or WPGMA method.
## 6. median, Gower's or WPGMC method.
## 7. centroid or UPGMC method (7).
## 8. Ward's ... "correct" method using d^2 (in Fortran) -> "ward.D2"
##
## Original author: F. Murtagh, May 1992
## R Modifications: Ross Ihaka, Dec 1996
## Friedrich Leisch, Apr 1998, Jun 2000
## "ward.D" and "ward.D2" from suggestions by Pierre Legendre,
## by Martin Maechler, mostly in the Fortran part.
hclust <- function(d, method="complete", members=NULL)
{
## order of METHODS --> i.meth -> Fortran's iOpt codes
METHODS <- c("ward.D", "single", # 1, 2,
"complete", "average", "mcquitty", # 3, 4, 5,
"median", "centroid", "ward.D2") # 6, 7, 8
if(method == "ward") { # do not deprecate earlier than 2015!
message("The \"ward\" method has been renamed to \"ward.D\"; note new \"ward.D2\"")
method <- "ward.D"
}
i.meth <- pmatch(method, METHODS)
if(is.na(i.meth))
## TODO: use gettextf() [-> translation string change]
stop("invalid clustering method", paste("", method))
if(i.meth == -1)
stop("ambiguous clustering method", paste("", method))
n <- as.integer(attr(d, "Size"))
if(is.null(n))
stop("invalid dissimilarities")
if(is.na(n) || n > 65536L) stop("size cannot be NA nor exceed 65536")
if(n < 2)
stop("must have n >= 2 objects to cluster")
len <- as.integer(n*(n-1)/2)
if(length(d) != len)
(if (length(d) < len) stop else warning
)("dissimilarities of improper length")
if(is.null(members))
members <- rep(1, n)
else if(length(members) != n)
stop("invalid length of members")
storage.mode(d) <- "double"
hcl <- .Fortran(C_hclust,
n = n,
len = len,
method = as.integer(i.meth),
ia = integer(n),
ib = integer(n),
crit = double(n),
members = as.double(members),
nn = integer(n),
disnn = double(n),
flag = logical(n),
diss = d)
## 2nd step: interpret the information that we now have
## as merge, height, and order lists.
hcass <- .Fortran(C_hcass2,
n = n, # checked above.
ia = hcl$ia,
ib = hcl$ib,
order = integer(n),
iia = integer(n),
iib = integer(n))
structure(list(merge = cbind(hcass$iia[1L:(n-1)], hcass$iib[1L:(n-1)]),
height = hcl$crit[1L:(n-1)],
order = hcass$order,
labels = attr(d, "Labels"),
method = METHODS[i.meth],
call = match.call(),
dist.method = attr(d, "method")),
class = "hclust")
}
##' @title Check hclust() object for validity
##' @param x "hclust" object
##' @param merge (= x$merge, passing it may save memory)
##' @param order logical indicating if 'x$order' should be checked, too
##' @return character vector with message or TRUE
##' @author Martin Maechler
.validity.hclust <- function(x, merge = x$merge, order = TRUE) {
if (!is.matrix(merge) || ncol(merge) != 2)
return("invalid dendrogram")
## merge should be integer but might not be after dump/restore.
if (any(as.integer(merge) != merge))
return("'merge' component in dendrogram must be integer")
n1 <- nrow(merge) # == #{obs} - 1
n <- n1+1L
if(length(x$height) != n1) return("'height' is of wrong length")
if(order && length(x$order ) != n ) return("'order' is of wrong length")
if(identical(sort(as.integer(merge)), c(-(n:1L), +seq_len(n-2L))))
TRUE
else
"'merge' matrix has invalid contents"
}
plot.hclust <-
function (x, labels = NULL, hang = 0.1, check = TRUE,
axes = TRUE, frame.plot = FALSE, ann = TRUE,
main = "Cluster Dendrogram",
sub = NULL, xlab = NULL, ylab = "Height", ...)
{
merge <- x$merge
if(check && !isTRUE(msg <- .validity.hclust(x,merge)))
stop(msg)
storage.mode(merge) <- "integer"
n1 <- nrow(merge) # == #{obs} - 1
n <- n1+1L
height <- as.double(x$height)
labels <-
if(missing(labels) || is.null(labels)) {
as.character(if(is.null(x$labels)) seq_len(n) else x$labels)
} else {
if(is.logical(labels) && !labels)# FALSE
character(n)
else
as.character(labels)
}
dev.hold(); on.exit(dev.flush())
plot.new()
graphics:::plotHclust(n1, merge, height, order(x$order), hang, labels, ...)
if(axes)
axis(2, at=pretty(range(height)), ...)
if (frame.plot)
box(...)
if (ann) {
if(!is.null(cl <- x$call) && is.null(sub))
sub <- paste0(deparse(cl[[1L]])," (*, \"", x$method,"\")")
if(is.null(xlab) && !is.null(cl))
xlab <- deparse(cl[[2L]])
title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...)
}
invisible()
}
as.hclust <- function(x, ...) UseMethod("as.hclust")
## need *.default for idempotency:
as.hclust.default <- function(x, ...) {
if(inherits(x, "hclust")) x
else
stop(gettextf("argument 'x' cannot be coerced to class %s",
dQuote("hclust")),
if(!is.null(oldClass(x)))
gettextf("\n Consider providing an as.hclust.%s() method",
oldClass(x)[1L]),
domain = NA)
}
as.hclust.twins <- function(x, ...)
{
r <- list(merge = x$merge,
height = sort(x$height),
order = x$order,
labels = if(!is.null(lb <- x$order.lab)) {
lb[sort.list(x$order)] } else rownames(x$data),# may be NULL
call = if(!is.null(cl <- x$call)) cl else match.call(),
method = if(!is.null(mt <- x$method)) mt else NA,
dist.method = attr(x$diss, "Metric"))
class(r) <- "hclust"
r
}
print.hclust <- function(x, ...)
{
if(!is.null(x$call))
cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")
if(!is.null(x$method))
cat("Cluster method :", x$method, "\n")
if(!is.null(x$dist.method))
cat("Distance :", x$dist.method, "\n")
cat("Number of objects:", length(x$height)+1, "\n")
cat("\n")
invisible(x)
}
cophenetic <-
function(x)
UseMethod("cophenetic")
cophenetic.default <-
function(x)
{
x <- as.hclust(x)
nobs <- length(x$order)
ilist <- vector("list", length = nobs)
out <- matrix(0, nrow = nobs, ncol = nobs)
for(i in 1 : (nobs - 1)) {
inds <- x$merge[i,]
ids1 <- if(inds[1L] < 0L) -inds[1L] else ilist[[inds[1L]]]
ids2 <- if(inds[2L] < 0L) -inds[2L] else ilist[[inds[2L]]]
ilist[[i]] <- c(ids1, ids2)
out[cbind(rep.int(ids1, rep.int(length(ids2), length(ids1))),
rep.int(ids2, length(ids1)))] <- x$height[i]
}
rownames(out) <- x$labels
as.dist(out + t(out))
}
cophenetic.dendrogram <-
function(x)
{
## Obtain cophenetic distances from a dendrogram by recursively
## doing the following:
## * if not a leaf, then for all children call ourselves, create
## a block diagonal matrix from this, and fill the rest with the
## current height (as everything in different children is joined
## at the current split) ...
## * if a leaf, height and result are 0.
## Actually, we need to return something of class "dist", so things
## are a bit more complicated, and we might be able to make this
## more efficient by avoiding matrices ...
if(is.leaf(x)) {
## If there is no label, we cannot recover the (names of the)
## objects the distances are for, and hence abort.
if(is.null(label <- attr(x, "label")))
stop("need dendrograms where all leaves have labels")
return(as.dist(matrix(0, dimnames = list(label, label))))
}
children <- vector("list", length(x))
for(i in seq_along(x))
children[[i]] <- Recall(x[[i]])
lens <- sapply(children, attr, "Size")
m <- matrix(attr(x, "height"), sum(lens), sum(lens))
## This seems a bit slower:
## inds <- split(seq(length.out = sum(lens)),
## rep.int(seq_along(lens), lens))
## for(i in seq_along(inds))
## m[inds[[i]], inds[[i]]] <- as.matrix(children[[i]])
hi <- cumsum(lens)
lo <- c(0L, hi[-length(hi)]) + 1L
for(i in seq_along(x))
m[lo[i] : hi[i], lo[i] : hi[i]] <- as.matrix(children[[i]])
rownames(m) <- colnames(m) <- unlist(lapply(children, attr, "Labels"))
as.dist(m)
}