-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathhuman_vs_ai.py
49 lines (32 loc) · 1.25 KB
/
human_vs_ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import tensorflow as tf
import argparse
from agents.ai_agent import AIAgent
from agents.q_agent import QAgent
from agents.human_agent import HumanAgent
import environment as brisc
from utils import BriscolaLogger
from utils import NetworkTypes
def main(argv=None):
# Initializing the environment
logger = BriscolaLogger(BriscolaLogger.LoggerLevels.PVP)
game = brisc.BriscolaGame(2, logger)
# Initialize agents
agents = []
agents.append(HumanAgent())
if FLAGS.model_dir:
agent = QAgent(network=FLAGS.network)
agent.load_model(FLAGS.model_dir)
agent.make_greedy()
agents.append(agent)
else:
agent = AIAgent()
agents.append(agent)
brisc.play_episode(game, agents, train=False)
if __name__ == '__main__':
# Parameters
# ==================================================
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", default=None, help="Provide a trained model path if you want to play against a deep agent", type=str)
parser.add_argument("--network", default=NetworkTypes.DRQN, choices=[NetworkTypes.DQN, NetworkTypes.DRQN], help="Neural Network used for approximating value function")
FLAGS = parser.parse_args()
tf.app.run()