forked from heyuan7676/COVID-19
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_sc_seq.R
96 lines (72 loc) · 3.51 KB
/
process_sc_seq.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
library(Seurat)
library(dplyr)
### process the barcodes - cell types
cell_identity = read.table('sc_data/GSE92332_atlas_UMIcounts.txt', nrows = 1, stringsAsFactors = F)
cell_identity = as.character(cell_identity[1,])
batch_id = sapply(cell_identity, function(x) strsplit(x, '_')[[1]][1])
barcode_id = sapply(cell_identity, function(x) strsplit(x, '_')[[1]][2])
cell_type = sapply(cell_identity, function(x) strsplit(x, '_')[[1]][3])
cell_identity = data.frame("batch_id" = batch_id, "barcode_id" = barcode_id, "cell_type" = cell_type)
print(nrow(cell_identity))
cell_identity = cell_identity[!duplicated(cell_identity$barcode_id), ]
rownames(cell_identity) = cell_identity$barcode_id
print(nrow(cell_identity))
### signature genes
signature_genes = c()
celltypes = c("Enterocyte_Mature_Distal", "Enterocyte_Mature_Proximal",
"Enteroendocrine", "goblet", "paneth", "tuft",
"Enterocyte_Immature_Distal", "Enterocyte_Immature_Proximal",
"stem", "TA.G2")
for(celltype in celltypes){
sg = read.table(paste0('sc_data/', celltype, '_signature_genes.txt'), sep='\t', stringsAsFactors = F)
signature_genes = c(signature_genes, sg$V1)
}
correct_count <- function(samples_name){
sc.data = Read10X(data.dir = paste0('sc_data/GSE92332_RAW/', samples_name))
sc = CreateSeuratObject(counts = sc.data, min.cells = 3, min.features = 800)
sc = NormalizeData(sc, normalization.method = "LogNormalize", scale.factor = 10000)
exp = sc[["RNA"]]@data
cells_annotated = intersect(colnames(exp), barcode_id)
exp = exp[,cells_annotated]
colnames(exp) = as.character(cell_identity[cells_annotated, "cell_type"])
exp = as.data.frame(exp)
exp = exp[signature_genes, ]
return(exp)
}
df_batchs = correct_count('Atlas1')
for(batch in c(2,5,6,9,10)){
df_count = correct_count(paste0('Atlas', batch))
df_batchs = cbind(df_batchs, df_count)
}
df_batchs[is.na(df_batchs)] = 0
df_batchs_save = as.data.frame(t(df_batchs))
df_batchs_save$celltype = colnames(df_batchs)
df_batchs_save_mean = aggregate(.~celltype, df_batchs_save, mean)
rownames(df_batchs_save_mean) = df_batchs_save_mean$celltype
df_batchs_save_mean = df_batchs_save_mean[,seq(2, ncol(df_batchs_save_mean))]
df_batchs_save_mean = as.data.frame(t(df_batchs_save_mean))
write.table(df_batchs_save_mean, 'sc_data/process_signature_genes.csv', sep=',', quote = F)
### check expression for signature genes
signature_genes_exp = list()
for(celltype in celltypes){
sg = read.table(paste0('sc_data/', celltype, '_signature_genes.txt'), sep='\t', stringsAsFactors = F)
sg = sg$V1
sg_exp = df_batchs[sg, ]
sg_exp = reshape2::melt(sg_exp)
sg_exp$variable = as.character(sg_exp$variable)
mean_value = sg_exp %>% group_by(variable) %>% summarise(mean = mean(value))
signature_genes_exp[[celltype]] = mean_value[order(mean_value$variable), ]
}
check_celltype_signature = as.data.frame(signature_genes_exp)
mean_col = colnames(check_celltype_signature)[grep('mean', colnames(check_celltype_signature))]
df_plot = check_celltype_signature[,mean_col]
df_plot$cell_type = check_celltype_signature$tuft.variable
df_plot = reshape2::melt(df_plot, id_var = 'cell_type')
library(RColorBrewer)
getPalette = colorRampPalette(brewer.pal(9, "Set1"))
g = ggplot(aes(x = variable, y = value, fill = cell_type), data = df_plot) +
geom_bar(stat= 'identity', position='dodge') +
theme(axis.text.x = element_text(angle = 90)) +
scale_fill_manual(values = getPalette(15)) +
xlab("Celltype of the signature genes") +
ylab("Mean value of genes in the signature geneset")