-
Notifications
You must be signed in to change notification settings - Fork 0
/
miccai_main_finetune_pipsUS_echo.py
585 lines (455 loc) · 23.9 KB
/
miccai_main_finetune_pipsUS_echo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
"""
Always keep the first frame as reference (regularization)
"""
import numpy as np
import saverloader
from nets.pipsUS import PipsUS
import utils.improc
import utils.geom
import utils.misc
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
from fire import Fire
from torch.utils.data import Dataset, DataLoader
from ultrasound.pseudo_label_v3_echo import generate_pseudo_gt as generate_pseudo_gt_pips2
from ultrasound.echodata import EchoUSDataset as RealUSDataset
from ultrasound.sanity_check_echodata import EchoUSDataset as RandomUSDataset
from ultrasound.sanity_check_echo_pseudo_label import generate_pseudo_gt as generate_pseudo_gt_random
import random
IMAGE_SIZE = 256
USE_BATCH = False # set to True somehow makes the model predict ~0
USE_GT_RATIO = 0.7
SEQ_DECAY_GAMMA = 0.95
USE_MINI = True
def pt_sequence_loss(pt_preds, pt_gt, gamma=0.8):
""" Loss function defined over sequence of flow predictions """
B, N, D = pt_gt.shape
assert(D==2)
n_predictions = len(pt_preds)
flow_loss = 0.0
# generate mask for invalid point
mask = (pt_gt[:, :, 0] >= 0) & (pt_gt[:,:,1] >= 0) & (pt_gt[:,:,0] <IMAGE_SIZE) & (pt_gt[:,:,1] < IMAGE_SIZE)
mask = mask.unsqueeze(2)
loss_func = nn.HuberLoss(reduction='sum')
for i in range(n_predictions):
i_weight = gamma**(n_predictions - i - 1)
# i_loss = F.l1_loss(pt_preds[i] * mask, pt_gt * mask, reduction='sum')
i_loss = loss_func(pt_preds[i] * mask, pt_gt * mask)
flow_loss += i_weight * i_loss / torch.sum(mask)
flow_loss = flow_loss/n_predictions
if torch.isnan(flow_loss):
if torch.sum(mask) > 0:
for i in range(n_predictions):
print("Iteration:", i, "pred has NaN:", torch.isnan(pt_preds[i]).any()) # HAS NaN HERE!!!!! OUTPUT EXPLODED :( - mixing with gt previous traj resolved this XD https://discuss.pytorch.org/t/why-my-model-returns-nan/24329/4
return flow_loss
def requires_grad(parameters, flag=True):
for p in parameters:
p.requires_grad = flag
def fetch_optimizer(lr, wdecay, epsilon, num_steps, params):
optimizer = torch.optim.AdamW(params, lr=lr, weight_decay=wdecay, eps=epsilon)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer, lr, num_steps+100, pct_start=0.1, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
def train_model_random(student_model, data, device, sequence_length, optimizer, scheduler=None, iters=8, sw=None, use_augs=True, batch_size=4):
videos = data['rgbs'][0]
motion = data['motion'][0]
_, _, H, W = videos.shape
total_loss = 0
metrics = {}
# use teacher model to get the ground truth
# use two times of the sequence, and use schedule sampling to insert model pred into trajs_g
tracking_dataset = generate_pseudo_gt_random(videos, motion, is_train=True)
if tracking_dataset.__len__() == 0:
print("dataset length is 0! exit")
return 0, metrics
if USE_BATCH:
dataloader = DataLoader(tracking_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
else:
dataloader = DataLoader(tracking_dataset, batch_size=1, shuffle=True, num_workers=0)
# start iteration
student_model.to(device)
student_model.train()
seq_counter = 0
for i, data in enumerate(dataloader):
if np.random.rand() > 0.5: # skip half of the data
seq_counter += 1
seq_loss = 0
rgbs = data['images'] # B,S,C,H,W
trajs_g = data['trajs_gt'] # B,S,N,2
if np.random.rand() < 0.5: ## zero flow constraint
rgbs_pad = rgbs[:,0:1].repeat(1,sequence_length*2,1,1,1)
trajs_g_pad = trajs_g[:,0:1].repeat(1,sequence_length*2,1,1)
rgbs = torch.cat((rgbs_pad,rgbs[:,0:sequence_length]),dim=1)
trajs_g = torch.cat((trajs_g_pad, trajs_g[:,0:sequence_length]),dim=1)
else:
rgbs_pad = rgbs[:,0:1].repeat(1,sequence_length-1,1,1,1)
trajs_g_pad = trajs_g[:,0:1].repeat(1,sequence_length-1,1,1)
rgbs = torch.cat((rgbs_pad,rgbs),dim=1)
trajs_g = torch.cat((trajs_g_pad, trajs_g),dim=1)
if use_augs:
if np.random.rand() < 0.5: # rot90 aug
rgbs = rgbs.permute(0,1,2,4,3) # swap xy
trajs_g = trajs_g.flip([3]) # swap xy
if np.random.rand() < 0.5: # time inverse
rgbs = rgbs.flip([1])
trajs_g = trajs_g.flip([1])
B, S, C, H, W = rgbs.shape
assert(C==3)
B, S, N, D = trajs_g.shape
assert(D==2)
loss = torch.tensor(0.0).to(device)
rgbs = rgbs.to(device)
trajs_g = trajs_g.to(device)
valid_loss_counter = 0
for jj in range(S-sequence_length):
if jj == 0:
image_previous = rgbs[:,jj:jj+sequence_length]
trajs_previous = trajs_g[:,:sequence_length]
preds_coords = student_model(trajs_previous, image_previous=image_previous, image_curr=rgbs[:,jj+sequence_length], iters=iters, beautify=False)
else:
image_previous = torch.cat((rgbs[:,0:1],rgbs[:,jj+1:jj+sequence_length]), dim=1)
if np.random.rand() < USE_GT_RATIO:
trajs_previous_ = torch.cat((trajs_g[:,0:1], trajs_g[:,jj+1:jj+sequence_length]), dim=1)
# add noise
trajs_previous_[:,1:] = trajs_previous_[:,1:] + torch.from_numpy(np.random.normal(0, 1, trajs_previous_[:,1:].shape)).float().to(trajs_previous_.device)
else:
trajs_previous_ = torch.cat((trajs_g[:,0:1], trajs_previous[:,1:]), dim=1)
preds_coords = student_model(trajs_previous_, image_previous=image_previous, image_curr=rgbs[:,jj+sequence_length], iters=iters, beautify=False)
preds_e = preds_coords[-1] # prediction at the last iteration, B,N,2
# update trajs previous
trajs_previous = torch.cat((trajs_previous[:,1:], preds_e.detach().unsqueeze(1)), dim=1)
loss = pt_sequence_loss(preds_coords, trajs_g[:,jj+sequence_length])
if torch.isnan(loss):
continue
loss.backward()
seq_loss = seq_loss + loss.item()
valid_loss_counter += 1
torch.nn.utils.clip_grad_norm_(student_model.parameters(), 5.0)
optimizer.step()
optimizer.zero_grad()
if scheduler is not None:
scheduler.step()
if device == 'cuda:0':
torch.cuda.empty_cache()
if valid_loss_counter > 0:
seq_loss = seq_loss / valid_loss_counter
total_loss += seq_loss
if seq_counter > 0:
total_loss = total_loss / seq_counter
student_model.to('cpu')
metrics['total_loss'] = total_loss
# # visualize current training for the last batch
# if sw is not None and sw.save_this:
# prep_rgbs = utils.improc.preprocess_color(rgbs)
# trajs_pred = trajs_g.clone()
# trajs_pred[:,-1] = preds_e[:]
# sw.summ_traj2ds_on_rgbs('training/trajs_pred_on_rgbs', trajs_pred[0:1], utils.improc.preprocess_color(rgbs[0:1]), cmap='hot', linewidth=1, show_dots=False)
# sw.summ_traj2ds_on_rgbs('training/trajs_gt_on_rgbs', trajs_g[0:1], utils.improc.preprocess_color(rgbs[0:1]), cmap='hot', linewidth=1, show_dots=False)
# sw.summ_traj2ds_on_rgb('training/trajs_pred_on_rgb_curr', trajs_pred[0:1], prep_rgbs[0:1,-1], cmap='spring', linewidth=2)
# sw.summ_traj2ds_on_rgb('training/trajs_gt_on_rgb_curr', trajs_g[0:1], prep_rgbs[0:1,-1], cmap='spring', linewidth=2)
return total_loss, metrics
def val_model_pips2(student_model, data, device, sequence_length, iters=8, sw=None, batch_size=4):
metrics = {}
videos = data['rgbs'][0]
filename = data['filename'][0]
tracking_dataset = generate_pseudo_gt_pips2(filename, videos, is_train=False)
if tracking_dataset.__len__() == 0:
print("dataset length is 0! exit")
return {'total_loss': 0}
if USE_BATCH:
dataloader = DataLoader(tracking_dataset, batch_size=batch_size, shuffle=False, num_workers=0)
else:
dataloader = DataLoader(tracking_dataset, batch_size=1, shuffle=False, num_workers=0)
_, _, H, W = videos.shape
# metric to calculate
total_loss = 0
student_model.to(device)
student_model.eval()
with torch.no_grad():
# start iteration
for i, data in enumerate(dataloader):
rgbs = data['images'] # B,video_length,C,H,W
trajs_g = data['trajs_gt'] # B,video_length,N,2
# pad with static start
rgbs_pad = rgbs[:,0:1].repeat(1,sequence_length-1,1,1,1)
trajs_g_pad = trajs_g[:,0:1].repeat(1,sequence_length-1,1,1)
rgbs = torch.cat((rgbs_pad,rgbs),dim=1)
trajs_g = torch.cat((trajs_g_pad, trajs_g),dim=1)
B, S, C, H, W = rgbs.shape
assert(C==3)
B, S, N, D = trajs_g.shape
assert(D==2)
loss = torch.tensor(0.0).to(device)
rgbs = rgbs.to(device)
trajs_g = trajs_g.to(device)
valid_loss_counter = 0
for jj in range(S-sequence_length-1):
if jj == 0:
trajs_previous_from_model = trajs_g[:,:sequence_length] # buffer to save the prediction from model
trajs_previous = trajs_g[:,:sequence_length]
image_previous = rgbs[:,jj:jj+sequence_length]
else:
trajs_previous = torch.cat((trajs_g[:,0:1], trajs_previous_from_model[:,1:]), dim=1)
# trajs_previous = torch.cat((trajs_g[:,0:1], trajs_g[:,jj+1:jj+sequence_length]), dim=1)
image_previous = torch.cat((rgbs[:,0:1],rgbs[:,jj+1:jj+sequence_length]), dim=1)
preds_coords = student_model(trajs_previous, image_previous=image_previous, image_curr=rgbs[:,jj+sequence_length], iters=iters, beautify=True)
preds_e = preds_coords[-1] # prediction at the last iteration, B,N,2
trajs_previous_from_model = torch.cat((trajs_previous_from_model[:,1:], preds_e.detach().unsqueeze(1)), dim=1)
# for now just MSE, in the future add regularization
curr_loss = pt_sequence_loss(preds_coords, trajs_g[:,jj+sequence_length])
if torch.isnan(curr_loss):
print('nan in loss; skipping')
continue
loss += curr_loss
valid_loss_counter += 1
if valid_loss_counter > 0:
loss = loss / valid_loss_counter
total_loss = loss.item() + total_loss
total_loss = total_loss / len(dataloader)
# # visualize current training for the last batch
# if sw is not None and sw.save_this:
# prep_rgbs = utils.improc.preprocess_color(rgbs)
# trajs_pred = trajs_g.clone()
# trajs_pred[:,-1] = preds_e[:]
# sw.summ_traj2ds_on_rgbs('valid/trajs_pred_on_rgbs', trajs_pred[0:1], utils.improc.preprocess_color(rgbs[0:1]), cmap='hot', linewidth=1, show_dots=False)
# sw.summ_traj2ds_on_rgbs('valid/trajs_gt_on_rgbs', trajs_g[0:1], utils.improc.preprocess_color(rgbs[0:1]), cmap='hot', linewidth=1, show_dots=False)
# sw.summ_traj2ds_on_rgb('valid/trajs_pred_on_rgb_curr', trajs_pred[0:1], prep_rgbs[0:1,-1], cmap='spring', linewidth=2)
# sw.summ_traj2ds_on_rgb('valid/trajs_gt_on_rgb_curr', trajs_g[0:1], prep_rgbs[0:1,-1], cmap='spring', linewidth=2)
# analyze stats for this run
metrics['total_loss'] = total_loss
student_model.to('cpu')
return metrics
def train_model_pips2(student_model, data, device, sequence_length, optimizer, scheduler=None, iters=8, sw=None, use_augs=True, batch_size=4):
videos = data['rgbs'][0]
filename = data['filename'][0]
total_loss = 0
metrics = {}
# use teacher model to get the ground truth
# use two times of the sequence, and use schedule sampling to insert model pred into trajs_g
tracking_dataset = generate_pseudo_gt_pips2(filename, videos, is_train=True)
if tracking_dataset.__len__() == 0:
print("dataset length is 0! exit")
return 0, metrics
if USE_BATCH:
dataloader = DataLoader(tracking_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
else:
dataloader = DataLoader(tracking_dataset, batch_size=1, shuffle=True, num_workers=0)
# start iteration
student_model.to(device)
student_model.train()
for i, data in enumerate(dataloader):
seq_loss = 0
rgbs = data['images'] # B,21,C,H,W
trajs_g = data['trajs_gt'] # B,21,N,2
if np.random.rand() < 0.5:
# zero flow
rgbs_pad = rgbs[:,0:1].repeat(1,sequence_length*2,1,1,1)
trajs_g_pad = trajs_g[:,0:1].repeat(1,sequence_length*2,1,1)
rgbs = torch.cat((rgbs_pad,rgbs[:,0:sequence_length]),dim=1)
trajs_g = torch.cat((trajs_g_pad, trajs_g[:,0:sequence_length]),dim=1)
else:
rgbs_pad = rgbs[:,0:1].repeat(1,sequence_length-1,1,1,1)
trajs_g_pad = trajs_g[:,0:1].repeat(1,sequence_length-1,1,1)
rgbs = torch.cat((rgbs_pad,rgbs),dim=1)
trajs_g = torch.cat((trajs_g_pad, trajs_g),dim=1)
if use_augs:
if np.random.rand() < 0.5: # rot90 aug
rgbs = rgbs.permute(0,1,2,4,3) # swap xy
trajs_g = trajs_g.flip([3]) # swap xy
if np.random.rand() < 0.5: # time inverse
rgbs = rgbs.flip([1])
trajs_g = trajs_g.flip([1])
B, S, C, H, W = rgbs.shape
# print("video length", S)
assert(C==3)
B, S, N, D = trajs_g.shape
assert(D==2)
# print("video length", S)
loss = torch.tensor(0.0).to(device)
rgbs = rgbs.to(device)
trajs_g = trajs_g.to(device)
valid_loss_counter = 0
for jj in range(S-sequence_length):
if jj == 0:
image_previous = rgbs[:,jj:jj+sequence_length]
trajs_previous = trajs_g[:,:sequence_length]
preds_coords = student_model(trajs_previous, image_previous=image_previous, image_curr=rgbs[:,jj+sequence_length], iters=iters, beautify=False)
else:
image_previous = torch.cat((rgbs[:,0:1],rgbs[:,jj+1:jj+sequence_length]), dim=1)
if np.random.rand() < USE_GT_RATIO:
trajs_previous_ = torch.cat((trajs_g[:,0:1], trajs_g[:,jj+1:jj+sequence_length]), dim=1)
# add noise
trajs_previous_[:,1:] = trajs_previous_[:,1:] + torch.from_numpy(np.random.normal(0, 1, trajs_previous_[:,1:].shape)).float().to(trajs_previous_.device)
else:
trajs_previous_ = torch.cat((trajs_g[:,0:1], trajs_previous[:,1:]), dim=1)
preds_coords = student_model(trajs_previous_, image_previous=image_previous, image_curr=rgbs[:,jj+sequence_length], iters=iters, beautify=False)
preds_e = preds_coords[-1] # prediction at the last iteration, B,N,2
# update trajs previous
trajs_previous = torch.cat((trajs_previous[:,1:], preds_e.detach().unsqueeze(1)), dim=1)
i_weight = SEQ_DECAY_GAMMA**(S - sequence_length - jj)
loss = pt_sequence_loss(preds_coords, trajs_g[:,jj+sequence_length]) * i_weight
if torch.isnan(loss):
continue
loss.backward()
seq_loss = seq_loss + loss.item()
valid_loss_counter += 1
torch.nn.utils.clip_grad_norm_(student_model.parameters(), 5.0)
optimizer.step()
optimizer.zero_grad()
if scheduler is not None:
scheduler.step()
if device == 'cuda:0':
torch.cuda.empty_cache()
if valid_loss_counter > 0:
seq_loss = seq_loss / valid_loss_counter
total_loss += seq_loss
total_loss = total_loss / len(dataloader)
student_model.to('cpu')
metrics['total_loss'] = total_loss
# # visualize current training for the last batch
# if sw is not None and sw.save_this:
# prep_rgbs = utils.improc.preprocess_color(rgbs)
# trajs_pred = trajs_g.clone()
# trajs_pred[:,-1] = preds_e[:]
# sw.summ_traj2ds_on_rgbs('training/trajs_pred_on_rgbs', trajs_pred[0:1], utils.improc.preprocess_color(rgbs[0:1]), cmap='hot', linewidth=1, show_dots=False)
# sw.summ_traj2ds_on_rgbs('training/trajs_gt_on_rgbs', trajs_g[0:1], utils.improc.preprocess_color(rgbs[0:1]), cmap='hot', linewidth=1, show_dots=False)
# sw.summ_traj2ds_on_rgb('training/trajs_pred_on_rgb_curr', trajs_pred[0:1], prep_rgbs[0:1,-1], cmap='spring', linewidth=2)
# sw.summ_traj2ds_on_rgb('training/trajs_gt_on_rgb_curr', trajs_g[0:1], prep_rgbs[0:1,-1], cmap='spring', linewidth=2)
return total_loss, metrics
def train(
S=5, # seqlen
stride=8, # spatial stride of the model
iters=6, # inference steps of the model
use_augs=True,
reshape_size=(IMAGE_SIZE,IMAGE_SIZE), # size of the input to the model
keypoint = 'sift',
# optimization
lr=1e-4,
use_scheduler=False,
max_epoch=50,
# summaries
log_dir='./logs_train',
log_freq=5,
backup_freq=5,
# saving/loading
ckpt_dir='./checkpoints',
keep_latest=2,
init_dir='', # previous checkpoint to initialize with
load_optimizer=True,
load_step=True,
ignore_load=None,
):
device = 'cuda:0'
exp_name = 'Feb27_finetune'
if init_dir:
init_dir = '%s/%s' % (ckpt_dir, init_dir)
# autogen a descriptive name
model_name = "pipsUSMICCAI_echo"
model_name += "_i%d" % (iters)
model_name += "_S%d" % (S)
model_name += "_size%d_%d" % (reshape_size[0], reshape_size[1])
model_name += "_kp%s" % (keypoint)
lrn = "%.1e" % lr # e.g., 5.0e-04
lrn = lrn[0] + lrn[3:5] + lrn[-1] # e.g., 5e-4
model_name += "_lr%s" % lrn
if use_scheduler:
model_name += "_s"
if use_augs:
model_name += "_A"
model_name += "_%s" % exp_name
print('model_name', model_name)
ckpt_path = '%s/%s' % (ckpt_dir, model_name)
writer_t = SummaryWriter(log_dir + '/' + model_name + '/t', max_queue=10, flush_secs=60)
# load dataset
print("loading data...")
dataset_t = RealUSDataset('train', reshape_size, use_mini=USE_MINI)
dataset_v = RealUSDataset('val', reshape_size, use_mini=USE_MINI)
dataset_t2 = RandomUSDataset('train', reshape_size, use_mini=USE_MINI)
# dataset_v2 = RandomUSDataset('valid', reshape_size)
dataloader_t = DataLoader(dataset_t, batch_size=1, shuffle=True, num_workers=0, drop_last=False)
dataloader_v = DataLoader(dataset_v, batch_size=1, shuffle=False, num_workers=0, drop_last=False)
dataloader_t2 = DataLoader(dataset_t2, batch_size=1, shuffle=True, num_workers=0, drop_last=False)
# dataloader_v2 = DataLoader(dataset_v2, batch_size=1, shuffle=False, num_workers=0, drop_last=False)
print("finish loading data! Dataset size: ", len(dataset_t), "and", len(dataset_v))
max_iters = max_epoch * len(dataset_t) * 100
# setup model and optimizer
print("setting up model and optimizer...")
student_model = PipsUS(stride=stride) #.to(device)
student_model.init_realtime_delta()
_ = saverloader.load('./checkpoints/pipsUSMICCAI_echo_i6_S5_size256_256_kpsift_lr5e-4_A_Feb27_warmup', student_model, model_name='model')
student_model.to(device)
parameters = list(student_model.parameters())
weight_decay = 1e-6
if use_scheduler:
optimizer, scheduler = fetch_optimizer(lr, weight_decay, 1e-8, max_iters, student_model.parameters())
else:
optimizer = torch.optim.AdamW(parameters, lr=lr, weight_decay=weight_decay)
scheduler = None
utils.misc.count_parameters(student_model)
global_step = 0
if init_dir:
if load_step and load_optimizer:
global_step = saverloader.load(init_dir, student_model, optimizer=optimizer, scheduler=scheduler, ignore_load=ignore_load)
elif load_step:
global_step = saverloader.load(init_dir, student_model, ignore_load=ignore_load)
else:
_ = saverloader.load(init_dir, student_model.module, ignore_load=ignore_load)
global_step = 0
requires_grad(parameters, True)
student_model.train()
best_val_l1 = 999999.999
last_epoch = global_step
sw_t = utils.improc.Summ_writer(
writer=writer_t,
global_step=global_step,
log_freq=log_freq,
fps=min(S,8),
scalar_freq=log_freq//4,
just_gif=True)
for epoch in range(last_epoch, max_epoch):
# training loop
for i, data in enumerate(dataloader_t):
if use_scheduler:
total_loss, metrics = train_model_pips2(student_model, data, device, S, iters=iters, optimizer=optimizer, scheduler=scheduler, use_augs=use_augs, sw=None)
else:
total_loss, metrics = train_model_pips2(student_model, data, device, S, iters=iters, optimizer=optimizer, use_augs=use_augs, sw=None)
if i % log_freq == 0 or i == len(dataloader_t) - 1:
print("Training epoch ", global_step, " video ", i, "/", len(dataloader_t), ", total loss", total_loss)
sw_t.summ_scalar('total_loss', total_loss)
current_lr = optimizer.param_groups[0]['lr']
sw_t.summ_scalar('_/current_lr', current_lr)
# training loop
for i, data in enumerate(dataloader_t2):
if use_scheduler:
total_loss, metrics = train_model_random(student_model, data, device, S, iters=iters, optimizer=optimizer, scheduler=scheduler, use_augs=use_augs, sw=None)
else:
total_loss, metrics = train_model_random(student_model, data, device, S, iters=iters, optimizer=optimizer, use_augs=use_augs, sw=None)
if i % log_freq == 0 or i == len(dataloader_t) - 1:
print("Training epoch ", global_step, " video ", i, "/", len(dataloader_t), ", total loss", total_loss)
sw_t.summ_scalar('total_loss', total_loss)
current_lr = optimizer.param_groups[0]['lr']
sw_t.summ_scalar('_/current_lr', current_lr)
global_step += 1
saverloader.save(ckpt_path, optimizer, student_model, global_step, scheduler=scheduler, keep_latest=keep_latest)
if global_step % backup_freq == 0:
saverloader.save(ckpt_path, optimizer, student_model, global_step, scheduler=scheduler, model_name='backup_model')
# validation loop
val_loss = 0
for i, data in enumerate(dataloader_v):
student_model.eval()
with torch.no_grad():
metrics = val_model_pips2(student_model, data, device, S, iters=iters, sw=None)
val_loss += metrics['total_loss']
if i % log_freq == 0 or i == len(dataloader_v) - 1:
print("Valid video ", i, "/", len(dataloader_v), ", total loss", metrics['total_loss'])
if val_loss < best_val_l1:
saverloader.save(ckpt_path, optimizer, student_model, global_step, scheduler=scheduler, keep_latest=keep_latest, model_name='best_val')
best_val_l1 = val_loss
print("update best checkpoint! Current epoch: ", global_step)
if global_step % backup_freq == 0:
saverloader.save(ckpt_path, optimizer, student_model, global_step, scheduler=scheduler, model_name='best_val_backup')
student_model.train()
writer_t.close()
if __name__ == '__main__':
Fire(train)