Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ValueError: Error when checking input: expected input_image_meta to have shape (14,) but got array with shape (17,) #13

Open
VishveshBhat8 opened this issue Sep 10, 2020 · 0 comments

Comments

@VishveshBhat8
Copy link

I'm getting the following error during training
ValueError: Error when checking input: expected input_image_meta to have shape (14,) but got array with shape (17,)

Starting at epoch 0. LR=0.001

Checkpoint Path: ../aktwelve_Mask_RCNN\logs\cig_butts20200910T2032\mask_rcnn_cig_butts_{epoch:04d}.h5
Selecting layers to train
fpn_c5p5 (Conv2D)
fpn_c4p4 (Conv2D)
fpn_c3p3 (Conv2D)
fpn_c2p2 (Conv2D)
fpn_p5 (Conv2D)
fpn_p2 (Conv2D)
fpn_p3 (Conv2D)
fpn_p4 (Conv2D)
rpn_model (Functional)
mrcnn_mask_conv1 (TimeDistributed)
mrcnn_mask_bn1 (TimeDistributed)
mrcnn_mask_conv2 (TimeDistributed)
mrcnn_mask_bn2 (TimeDistributed)
mrcnn_class_conv1 (TimeDistributed)
mrcnn_class_bn1 (TimeDistributed)
mrcnn_mask_conv3 (TimeDistributed)
mrcnn_mask_bn3 (TimeDistributed)
mrcnn_class_conv2 (TimeDistributed)
mrcnn_class_bn2 (TimeDistributed)
mrcnn_mask_conv4 (TimeDistributed)
mrcnn_mask_bn4 (TimeDistributed)
mrcnn_bbox_fc (TimeDistributed)
mrcnn_mask_deconv (TimeDistributed)
mrcnn_class_logits (TimeDistributed)
mrcnn_mask (TimeDistributed)
Epoch 1/4
c:\users\owner\appdata\local\programs\python\python36\lib\site-packages\skimage\transform_warps.py:830: FutureWarning: Input image dtype is bool. Interpolation is not defined with bool data type. Please set order to 0 or explicitely cast input image to another data type. Starting from version 0.19 a ValueError will be raised instead of this warning.
order = _validate_interpolation_order(image.dtype, order)

ValueError Traceback (most recent call last)
in
8 learning_rate=config.LEARNING_RATE,
9 epochs=4,
---> 10 layers='heads')
11 end_train = time.time()
12 minutes = round((end_train - start_train) / 60, 2)

~\Desktop\tutorials-masterr\aktwelve_Mask_RCNN\mrcnn\model.py in train(self, train_dataset, val_dataset, learning_rate, epochs, layers, augmentation, custom_callbacks, no_augmentation_sources)
2365 max_queue_size=100,
2366 workers=workers,
-> 2367 use_multiprocessing=workers > 1,
2368 )
2369 self.epoch = max(self.epoch, epochs)

c:\users\owner\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training_v1.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
807 max_queue_size=max_queue_size,
808 workers=workers,
--> 809 use_multiprocessing=use_multiprocessing)
810
811 def evaluate(self,

c:\users\owner\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training_generator.py in fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing)
588 shuffle=shuffle,
589 initial_epoch=initial_epoch,
--> 590 steps_name='steps_per_epoch')
591
592 def evaluate(self,

c:\users\owner\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training_generator.py in model_iteration(model, data, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch, mode, batch_size, steps_name, **kwargs)
254
255 is_deferred = not model._is_compiled
--> 256 batch_outs = batch_function(*batch_data)
257 if not isinstance(batch_outs, list):
258 batch_outs = [batch_outs]

c:\users\owner\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training_v1.py in train_on_batch(self, x, y, sample_weight, class_weight, reset_metrics)
1062 x, y, sample_weights = self._standardize_user_data(
1063 x, y, sample_weight=sample_weight, class_weight=class_weight,
-> 1064 extract_tensors_from_dataset=True)
1065
1066 # If self._distribution_strategy is True, then we are in a replica context

c:\users\owner\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training_v1.py in _standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, check_steps, steps_name, steps, validation_split, shuffle, extract_tensors_from_dataset)
2332 is_dataset=is_dataset,
2333 class_weight=class_weight,
-> 2334 batch_size=batch_size)
2335
2336 def _standardize_tensors(self, x, y, sample_weight, run_eagerly, dict_inputs,

c:\users\owner\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training_v1.py in _standardize_tensors(self, x, y, sample_weight, run_eagerly, dict_inputs, is_dataset, class_weight, batch_size)
2359 feed_input_shapes,
2360 check_batch_axis=False, # Don't enforce the batch size.
-> 2361 exception_prefix='input')
2362
2363 # Get typespecs for the input data and sanitize it if necessary.

c:\users\owner\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
581 ': expected ' + names[i] + ' to have shape ' +
582 str(shape) + ' but got array with shape ' +
--> 583 str(data_shape))
584 return data
585

ValueError: Error when checking input: expected input_image_meta to have shape (14,) but got array with shape (17,)

Can anyone please tell me how to resolve it?
Thanks

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant