-
Notifications
You must be signed in to change notification settings - Fork 56
/
train.py
167 lines (148 loc) · 7.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
from torch.utils.data import DataLoader
from datasets.landmark import Landmark
from utils.wing_loss import WingLoss
from models.slim import Slim
import sys
import time
from utils.consoler import rewrite, next_line
lr_decay_every_epoch = [1, 25, 35, 75, 150]
lr_value_every_epoch = [0.00001, 0.0001, 0.00005, 0.00001, 0.000001]
weight_decay_factor = 5.e-4
l2_regularization = weight_decay_factor
if "win32" in sys.platform:
input_size = (160, 160)
batch_size = 128
else:
input_size = (128, 128)
batch_size = 256
class Metrics:
def __init__(self):
self.landmark_loss = 0
self.loss_pose = 0
self.leye_loss = 0
self.reye_loss = 0
self.mouth_loss = 0
self.counter = 0
def update(self, landmark_loss, loss_pose, leye_loss, reye_loss, mouth_loss):
self.landmark_loss += landmark_loss.item()
self.loss_pose += loss_pose.item()
self.leye_loss += leye_loss.item()
self.reye_loss += reye_loss.item()
self.mouth_loss += mouth_loss.item()
self.counter += 1
def summary(self):
total = (self.landmark_loss + self.loss_pose + self.leye_loss + self.reye_loss + self.mouth_loss) / self.counter
return total, self.landmark_loss / self.counter, self.loss_pose / self.counter, self.leye_loss / self.counter, self.reye_loss / self.counter, self.mouth_loss / self.counter
def decay(epoch):
if epoch < lr_decay_every_epoch[0]:
return lr_value_every_epoch[0]
if epoch >= lr_decay_every_epoch[0] and epoch < lr_decay_every_epoch[1]:
return lr_value_every_epoch[1]
if epoch >= lr_decay_every_epoch[1] and epoch < lr_decay_every_epoch[2]:
return lr_value_every_epoch[2]
if epoch >= lr_decay_every_epoch[2] and epoch < lr_decay_every_epoch[3]:
return lr_value_every_epoch[3]
if epoch >= lr_decay_every_epoch[3] and epoch < lr_decay_every_epoch[4]:
return lr_value_every_epoch[4]
def calculate_loss(predict_keypoints, label_keypoints):
landmark_label = label_keypoints[:, 0:136]
pose_label = label_keypoints[:, 136:139]
leye_cls_label = label_keypoints[:, 139]
reye_cls_label = label_keypoints[:, 140]
mouth_cls_label = label_keypoints[:, 141]
big_mouth_cls_label = label_keypoints[:, 142]
landmark_predict = predict_keypoints[:, 0:136]
pose_predict = predict_keypoints[:, 136:139]
leye_cls_predict = predict_keypoints[:, 139]
reye_cls_predict = predict_keypoints[:, 140]
mouth_cls_predict = predict_keypoints[:, 141]
big_mouth_cls_predict = predict_keypoints[:, 142]
landmark_loss = 2 * wing_loss_fn(landmark_predict, landmark_label)
loss_pose = mse_loss_fn(pose_predict, pose_label)
leye_loss = 0.8 * bce_loss_fn(leye_cls_predict, leye_cls_label)
reye_loss = 0.8 * bce_loss_fn(reye_cls_predict, reye_cls_label)
mouth_loss = bce_loss_fn(mouth_cls_predict, mouth_cls_label)
mouth_loss_big = bce_loss_fn(big_mouth_cls_predict, big_mouth_cls_label)
mouth_loss = 0.5 * (mouth_loss + mouth_loss_big)
return landmark_loss + loss_pose + leye_loss + reye_loss + mouth_loss, landmark_loss, loss_pose, leye_loss, reye_loss, mouth_loss
def train(epoch):
model.train()
metrics = Metrics()
total_samples = 0
start = time.time()
print("==================================Training Phase=================================")
print("Current LR:{}".format(list(optim.param_groups)[0]['lr']))
for i, (imgs, labels) in enumerate(train_loader):
imgs = imgs.cuda()
labels = labels.cuda()
optim.zero_grad()
preds = model(imgs)
loss, landmark_loss, loss_pose, leye_loss, reye_loss, mouth_loss = calculate_loss(preds, labels)
metrics.update(landmark_loss, loss_pose, leye_loss, reye_loss, mouth_loss)
loss.backward()
optim.step()
total_samples += len(imgs)
end = time.time()
speed = (i + 1) / (end - start)
progress = total_samples / len(train_dataset)
rewrite(
"Epoch: {} Loss -- Total: {:.4f} Landmark: {:.4f} Pose: {:.4f} LEye: {:.4f} REye: {:.4f} Mouth: {:.4f} Progress: {:.4f} Speed: {:.4f}it/s".format(
epoch, loss.item(), landmark_loss.item(), loss_pose.item(), leye_loss.item(), reye_loss.item(),
mouth_loss.item(), progress, speed))
next_line()
avg_total_loss, avg_landmark_loss, avg_loss_pose, avg_leye_loss, avg_reye_loss, avg_mouth_loss = metrics.summary()
print(
"Train Avg Loss -- Total: {:.4f} Landmark: {:.4f} Poss: {:.4f} LEye: {:.4f} REye: {:.4f} Mouth: {:.4f}".format(
avg_total_loss, avg_landmark_loss, avg_loss_pose, avg_leye_loss, avg_reye_loss, avg_mouth_loss))
def eval(epoch):
model.eval()
metrics = Metrics()
start = time.time()
total_samples = 0
print("==================================Eval Phase=================================")
for i, (imgs, labels) in enumerate(val_loader):
imgs = imgs.cuda()
labels = labels.cuda()
with torch.no_grad():
preds = model(imgs)
loss, landmark_loss, loss_pose, leye_loss, reye_loss, mouth_loss = calculate_loss(preds, labels)
metrics.update(landmark_loss, loss_pose, leye_loss, reye_loss, mouth_loss)
total_samples += len(imgs)
end = time.time()
speed = (i + 1) / (end - start)
progress = total_samples / len(val_dataset)
rewrite(
"Epoch: {} Loss -- Total: {:.4f} Landmark: {:.4f} Pose: {:.4f} LEye: {:.4f} REye: {:.4f} Mouth: {:.4f} Progress: {:.4f} Speed: {:.4f}it/s".format(
epoch, loss.item(), landmark_loss.item(), loss_pose.item(), leye_loss.item(), reye_loss.item(),
mouth_loss.item(), progress, speed))
next_line()
avg_total_loss, avg_landmark_loss, avg_loss_pose, avg_leye_loss, avg_reye_loss, avg_mouth_loss = metrics.summary()
print(
"Eval Avg Loss -- Total: {:.4f} Landmark: {:.4f} Poss: {:.4f} LEye: {:.4f} REye: {:.4f} Mouth: {:.4f}".format(
avg_total_loss, avg_landmark_loss, avg_loss_pose, avg_leye_loss, avg_reye_loss, avg_mouth_loss))
torch.save(model.state_dict(), open("weights/slim128_epoch_{}_{:.4f}.pth".format(epoch, avg_landmark_loss), "wb"))
if __name__ == '__main__':
checkpoint = None
torch.backends.cudnn.benchmark = True
train_dataset = Landmark("train.json", input_size, True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_dataset = Landmark("val.json", input_size, False)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
model = Slim()
model.train()
model.cuda()
if checkpoint is not None:
model.load_state_dict(torch.load(checkpoint))
start_epoch = int(checkpoint.split("_")[-2]) + 1
else:
start_epoch = 0
wing_loss_fn = WingLoss()
mse_loss_fn = torch.nn.MSELoss()
bce_loss_fn = torch.nn.BCEWithLogitsLoss()
optim = torch.optim.Adam(model.parameters(), lr=lr_value_every_epoch[0], weight_decay=5e-4)
for epoch in range(start_epoch, 150):
for param_group in optim.param_groups:
param_group['lr'] = decay(epoch)
train(epoch)
eval(epoch)