-
Notifications
You must be signed in to change notification settings - Fork 3
/
ablation_adni_survival.py
140 lines (111 loc) · 4.36 KB
/
ablation_adni_survival.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# This file is part of Dynamic Affine Feature Map Transform (DAFT).
#
# DAFT is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DAFT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with DAFT. If not, see <https://www.gnu.org/licenses/>.
import os
import socket
import tempfile
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, Tuple
import pandas as pd
import ray
import torch
from daft.evaluate import load_model_and_evaluate_survival
from train import main as main_train
@ray.remote(num_gpus=1)
def run_experiment(fold, cmd):
gpu_ids = ray.get_gpu_ids()
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, gpu_ids))
factory = main_train(cmd)
results = load_model_and_evaluate_survival(
factory.args, factory.checkpoints_dir, torch.device("cuda"), progressbar=False
)
results["fold"] = fold
results["hostname"] = socket.gethostname()
return results
def get_args(data_dir: Path, fold: int, loc: str, scale: str, shift: str, activation: str) -> Dict[str, Any]:
cfg = {
"task": "surv",
"epoch": "80",
"batchsize": "256",
"optimizer": "AdamW",
"train_data": str((data_dir / f"{fold}-train.h5").resolve()),
"val_data": str((data_dir / f"{fold}-valid.h5").resolve()),
"test_data": str((data_dir / f"{fold}-test.h5").resolve()),
"discriminator_net": "daft",
"learning_rate": "0.0055",
"decay_rate": "0.01",
"experiment_name": f"split-{fold}/daft_loc{loc}_scale{scale}_shift{shift}_act{activation}",
"num_classes": "1",
"n_basefilters": "4",
"film_location": loc,
"bottleneck_factor": "7",
"normalize_image": "minmax",
"dataset": "longitudinal",
"scale": scale,
"shift": shift,
"activation": activation,
}
cmd = []
for k, v in cfg.items():
cmd.append(f"--{k}")
cmd.append(v)
cmd.append("--normalize_tabular")
return cmd
def iter_experiments(data_dir: Path, fold: int) -> Tuple[int, Dict[str, Any]]:
for loc in map(str, filter(lambda x: x != 2, range(5))):
yield fold, get_args(data_dir, fold, loc, "enabled", "enabled", "linear")
s_s_tuples = [
("enabled", "disabled", "linear"),
("disabled", "enabled", "linear"),
]
for activation in (
"tanh",
"sigmoid",
):
s_s_tuples.append(("enabled", "enabled", activation))
for scale, shift, activation in s_s_tuples:
yield fold, get_args(data_dir, fold, "2", scale, shift, activation)
def save_as_csv(results, outfile):
df = pd.DataFrame(results)
df.to_csv(outfile)
def run_fold(data_dir: Path, fold: int) -> None:
filename = f"results_adni_survival_ablation_split-{fold}"
remaining_ids = [run_experiment.remote(f, c) for f, c in iter_experiments(data_dir, fold)]
results = []
prev_file = None
while len(remaining_ids) > 0:
done_id, remaining_ids = ray.wait(remaining_ids)
results.append(ray.get(done_id[0]))
with tempfile.NamedTemporaryFile(suffix=f"{filename}_partial.csv", dir=".", delete=False, mode="w") as fout:
save_as_csv(results, fout)
new_file = Path(fout.name)
if prev_file is not None:
prev_file.unlink()
prev_file = new_file
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M")
outfile = prev_file.with_name(f"{filename}-{timestamp}.csv")
print(f"Saving results to {outfile}")
prev_file.rename(outfile)
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--ray_address", required=True, help="The address of the Ray cluster to connect to.")
parser.add_argument("--data_dir", required=True, type=Path, help="Path to directory containing HDF5 files.")
args = parser.parse_args()
ray.init(address=args.ray_address)
for fold in range(5):
run_fold(args.data_dir, fold)
if __name__ == "__main__":
main()