forked from ratschlab/RGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
482 lines (440 loc) · 22.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import tensorflow as tf
import numpy as np
#from data_utils import get_batch
import data_utils
import pdb
import json
from mod_core_rnn_cell_impl import LSTMCell #modified to allow initializing bias in lstm
#from tensorflow.contrib.rnn import LSTMCell
tf.logging.set_verbosity(tf.logging.ERROR)
import mmd
from differential_privacy.dp_sgd.dp_optimizer import dp_optimizer
from differential_privacy.dp_sgd.dp_optimizer import sanitizer
from differential_privacy.privacy_accountant.tf import accountant
# --- to do with latent space --- #
def sample_Z(batch_size, seq_length, latent_dim, use_time=False, use_noisy_time=False):
sample = np.float32(np.random.normal(size=[batch_size, seq_length, latent_dim]))
if use_time:
print('WARNING: use_time has different semantics')
sample[:, :, 0] = np.linspace(0, 1.0/seq_length, num=seq_length)
#if use_noisy_time or use_time:
# # time grid is time_grid_mult times larger than seq_length
# time_grid_mult = 5
# time_grid = (np.arange(seq_length*time_grid_mult)/((seq_length*time_grid_mult)/2)) - 1
# time_axes = []
# for i in range(batch_size):
# # randomly chose a starting point in the time grid
# starting_point = np.random.choice(np.arange(len(time_grid))[:-seq_length])
# time_axis = time_grid[starting_point:starting_point+seq_length]
# if use_noisy_time:
# time_axis += np.random.normal(scale=2.0/len(time_axis), size=len(time_axis))
# time_axes.append(time_axis)
# sample[:,:,0] = time_axes
return sample
def sample_C(batch_size, cond_dim=0, max_val=1, one_hot=False):
"""
return an array of integers (so far we only allow integer-valued
conditional values)
"""
if cond_dim == 0:
return None
else:
if one_hot:
assert max_val == 1
C = np.zeros(shape=(batch_size, cond_dim))
# locations
labels = np.random.choice(cond_dim, batch_size)
C[np.arange(batch_size), labels] = 1
else:
C = np.random.choice(max_val+1, size=(batch_size, cond_dim))
return C
# --- to do with training --- #
def train_epoch(epoch, samples, labels, sess, Z, X, CG, CD, CS, D_loss, G_loss, D_solver, G_solver,
batch_size, use_time, D_rounds, G_rounds, seq_length,
latent_dim, num_generated_features, cond_dim, max_val, WGAN_clip, one_hot):
"""
Train generator and discriminator for one epoch.
"""
for batch_idx in range(0, int(len(samples) / batch_size) - (D_rounds + (cond_dim > 0)*G_rounds), D_rounds + (cond_dim > 0)*G_rounds):
# update the discriminator
for d in range(D_rounds):
X_mb, Y_mb = data_utils.get_batch(samples, batch_size, batch_idx + d, labels)
Z_mb = sample_Z(batch_size, seq_length, latent_dim, use_time)
if cond_dim > 0:
# CGAN
Y_mb = Y_mb.reshape(-1, cond_dim)
if one_hot:
# change all of the labels to a different one
offsets = np.random.choice(cond_dim-1, batch_size) + 1
new_labels = (np.argmax(Y_mb, axis=1) + offsets) % cond_dim
Y_wrong = np.zeros_like(Y_mb)
Y_wrong[np.arange(batch_size), new_labels] = 1
else:
# flip all of the bits (assuming binary...)
Y_wrong = 1 - Y_mb
_ = sess.run(D_solver, feed_dict={X: X_mb, Z: Z_mb, CD: Y_mb, CS: Y_wrong, CG: Y_mb})
else:
_ = sess.run(D_solver, feed_dict={X: X_mb, Z: Z_mb})
if WGAN_clip:
# clip the weights
_ = sess.run([clip_disc_weights])
# update the generator
for g in range(G_rounds):
if cond_dim > 0:
# note we are essentially throwing these X_mb away...
X_mb, Y_mb = data_utils.get_batch(samples, batch_size, batch_idx + D_rounds + g, labels)
_ = sess.run(G_solver,
feed_dict={Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time), CG: Y_mb})
else:
_ = sess.run(G_solver,
feed_dict={Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time)})
# at the end, get the loss
if cond_dim > 0:
D_loss_curr, G_loss_curr = sess.run([D_loss, G_loss], feed_dict={X: X_mb, Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time), CG: Y_mb, CD: Y_mb})
D_loss_curr = np.mean(D_loss_curr)
G_loss_curr = np.mean(G_loss_curr)
else:
D_loss_curr, G_loss_curr = sess.run([D_loss, G_loss], feed_dict={X: X_mb, Z: sample_Z(batch_size, seq_length, latent_dim, use_time=use_time)})
D_loss_curr = np.mean(D_loss_curr)
G_loss_curr = np.mean(G_loss_curr)
return D_loss_curr, G_loss_curr
def WGAN_loss(Z, X, WGAN_clip=False):
raise NotImplementedError
G_sample = generator(Z, hidden_units_g, W_out_G, b_out_G, scale_out_G)
D_real, D_logit_real, D_logit_real_final = discriminator(X, hidden_units_d, seq_length, batch_size)
D_loss = tf.reduce_mean(D_fake) - tf.reduce_mean(D_real)
G_loss = -tf.reduce_mean(D_fake)
if not WGAN_clip:
# gradient penalty from improved WGAN code
# ... but it doesn't work in TF for RNNs, so let's skip it for now
# alpha = np.random.uniform(size=batch_size, low=0.0, high=1.0).reshape(batch_size, 1, 1)
# interpolates = alpha*X + ((1-alpha)*G_sample)
# pdb.set_trace()
# disc_interpolates, _ = discriminator(interpolates, reuse=True)
# gradients = tf.gradients(disc_interpolates, [interpolates])[0]
# slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
# gradient_penalty = tf.reduce_mean((slopes-1)**2)
# now for my own hack
# sample a random h
h = tf.random_normal(shape=X.shape, stddev=0.1)
D_offset, _ = discriminator(X + h, hidden_units_d)
gradient_penalty = tf.norm(D_offset - D_real)
KAPPA = 1.0
D_loss += KAPPA*gradient_penalty
clip_disc_weights = None
else:
# weight clipping from original WGAN
# Build an op to do the weight clipping
clip_ops = []
for var in discriminator_vars:
clip_bounds = [-.01, .01]
clip_ops.append(
tf.assign(
var,
tf.clip_by_value(var, clip_bounds[0], clip_bounds[1])
)
)
clip_disc_weights = tf.group(*clip_ops)
return G_loss, D_loss, clip_disc_weights
def GAN_loss(Z, X, generator_settings, discriminator_settings, kappa, cond, CG, CD, CS, wrong_labels=False):
if cond:
# C-GAN
G_sample = generator(Z, **generator_settings, c=CG)
D_real, D_logit_real = discriminator(X, **discriminator_settings, c=CD)
D_fake, D_logit_fake = discriminator(G_sample, reuse=True, **discriminator_settings, c=CG)
if wrong_labels:
# the discriminator must distinguish between real data with fake labels and real data with real labels, too
D_wrong, D_logit_wrong = discriminator(X, reuse=True, **discriminator_settings, c=CS)
else:
# normal GAN
G_sample = generator(Z, **generator_settings)
D_real, D_logit_real = discriminator(X, **discriminator_settings)
D_fake, D_logit_fake = discriminator(G_sample, reuse=True, **discriminator_settings)
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real)), 1)
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake)), 1)
D_loss = D_loss_real + D_loss_fake
if cond and wrong_labels:
D_loss = D_loss + D_loss_wrong
#G_loss = tf.reduce_mean(tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)), axis=1))
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)), 1)
return D_loss, G_loss
def GAN_solvers(D_loss, G_loss, learning_rate, batch_size, total_examples,
l2norm_bound, batches_per_lot, sigma, dp=False):
"""
Optimizers
"""
discriminator_vars = [v for v in tf.trainable_variables() if v.name.startswith('discriminator')]
generator_vars = [v for v in tf.trainable_variables() if v.name.startswith('generator')]
if dp:
print('Using differentially private SGD to train discriminator!')
eps = tf.placeholder(tf.float32)
delta = tf.placeholder(tf.float32)
priv_accountant = accountant.GaussianMomentsAccountant(total_examples)
clip = True
l2norm_bound = l2norm_bound/batch_size
batches_per_lot = 1
gaussian_sanitizer = sanitizer.AmortizedGaussianSanitizer(
priv_accountant,
[l2norm_bound, clip])
# the trick is that we need to calculate the gradient with respect to
# each example in the batch, during the DP SGD step
D_solver = dp_optimizer.DPGradientDescentOptimizer(learning_rate,
[eps, delta],
sanitizer=gaussian_sanitizer,
sigma=sigma,
batches_per_lot=batches_per_lot).minimize(D_loss, var_list=discriminator_vars)
else:
D_loss_mean_over_batch = tf.reduce_mean(D_loss)
D_solver = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(D_loss_mean_over_batch, var_list=discriminator_vars)
priv_accountant = None
G_loss_mean_over_batch = tf.reduce_mean(G_loss)
G_solver = tf.train.AdamOptimizer().minimize(G_loss_mean_over_batch, var_list=generator_vars)
return D_solver, G_solver, priv_accountant
# --- to do with the model --- #
def create_placeholders(batch_size, seq_length, latent_dim, num_generated_features, cond_dim):
Z = tf.placeholder(tf.float32, [batch_size, seq_length, latent_dim])
X = tf.placeholder(tf.float32, [batch_size, seq_length, num_generated_features])
CG = tf.placeholder(tf.float32, [batch_size, cond_dim])
CD = tf.placeholder(tf.float32, [batch_size, cond_dim])
CS = tf.placeholder(tf.float32, [batch_size, cond_dim])
return Z, X, CG, CD, CS
def generator(z, hidden_units_g, seq_length, batch_size, num_generated_features, reuse=False, parameters=None, cond_dim=0, c=None, learn_scale=True):
"""
If parameters are supplied, initialise as such
"""
with tf.variable_scope("generator") as scope:
if reuse:
scope.reuse_variables()
if parameters is None:
W_out_G_initializer = tf.truncated_normal_initializer()
b_out_G_initializer = tf.truncated_normal_initializer()
scale_out_G_initializer = tf.constant_initializer(value=1.0)
lstm_initializer = None
bias_start = 1.0
else:
W_out_G_initializer = tf.constant_initializer(value=parameters['generator/W_out_G:0'])
b_out_G_initializer = tf.constant_initializer(value=parameters['generator/b_out_G:0'])
try:
scale_out_G_initializer = tf.constant_initializer(value=parameters['generator/scale_out_G:0'])
except KeyError:
scale_out_G_initializer = tf.constant_initializer(value=1)
assert learn_scale
lstm_initializer = tf.constant_initializer(value=parameters['generator/rnn/lstm_cell/weights:0'])
bias_start = parameters['generator/rnn/lstm_cell/biases:0']
W_out_G = tf.get_variable(name='W_out_G', shape=[hidden_units_g, num_generated_features], initializer=W_out_G_initializer)
b_out_G = tf.get_variable(name='b_out_G', shape=num_generated_features, initializer=b_out_G_initializer)
scale_out_G = tf.get_variable(name='scale_out_G', shape=1, initializer=scale_out_G_initializer, trainable=learn_scale)
if cond_dim > 0:
# CGAN!
assert not c is None
repeated_encoding = tf.stack([c]*seq_length, axis=1)
inputs = tf.concat([z, repeated_encoding], axis=2)
#repeated_encoding = tf.tile(c, [1, tf.shape(z)[1]])
#repeated_encoding = tf.reshape(repeated_encoding, [tf.shape(z)[0], tf.shape(z)[1], cond_dim])
#inputs = tf.concat([repeated_encoding, z], 2)
else:
inputs = z
cell = LSTMCell(num_units=hidden_units_g,
state_is_tuple=True,
initializer=lstm_initializer,
bias_start=bias_start,
reuse=reuse)
rnn_outputs, rnn_states = tf.nn.dynamic_rnn(
cell=cell,
dtype=tf.float32,
sequence_length=[seq_length]*batch_size,
inputs=inputs)
rnn_outputs_2d = tf.reshape(rnn_outputs, [-1, hidden_units_g])
logits_2d = tf.matmul(rnn_outputs_2d, W_out_G) + b_out_G
# output_2d = tf.multiply(tf.nn.tanh(logits_2d), scale_out_G)
output_2d = tf.nn.tanh(logits_2d)
output_3d = tf.reshape(output_2d, [-1, seq_length, num_generated_features])
return output_3d
def discriminator(x, hidden_units_d, seq_length, batch_size, reuse=False,
cond_dim=0, c=None, batch_mean=False):
with tf.variable_scope("discriminator") as scope:
if reuse:
scope.reuse_variables()
W_out_D = tf.get_variable(name='W_out_D', shape=[hidden_units_d, 1],
initializer=tf.truncated_normal_initializer())
b_out_D = tf.get_variable(name='b_out_D', shape=1,
initializer=tf.truncated_normal_initializer())
# W_final_D = tf.get_variable(name='W_final_D', shape=[hidden_units_d, 1],
# initializer=tf.truncated_normal_initializer())
# b_final_D = tf.get_variable(name='b_final_D', shape=1,
# initializer=tf.truncated_normal_initializer())
if cond_dim > 0:
assert not c is None
repeated_encoding = tf.stack([c]*seq_length, axis=1)
inputs = tf.concat([x, repeated_encoding], axis=2)
else:
inputs = x
# add the average of the inputs to the inputs (mode collapse?
if batch_mean:
mean_over_batch = tf.stack([tf.reduce_mean(x, axis=0)]*batch_size, axis=0)
inputs = tf.concat([x, mean_over_batch], axis=2)
cell = tf.contrib.rnn.LSTMCell(num_units=hidden_units_d,
state_is_tuple=True,
reuse=reuse)
rnn_outputs, rnn_states = tf.nn.dynamic_rnn(
cell=cell,
dtype=tf.float32,
inputs=inputs)
# logit_final = tf.matmul(rnn_outputs[:, -1], W_final_D) + b_final_D
logits = tf.einsum('ijk,km', rnn_outputs, W_out_D) + b_out_D
# rnn_outputs_flat = tf.reshape(rnn_outputs, [-1, hidden_units_d])
# logits = tf.matmul(rnn_outputs_flat, W_out_D) + b_out_D
output = tf.nn.sigmoid(logits)
#return output, logits, logit_final
return output, logits
# --- to do with saving/loading --- #
def dump_parameters(identifier, sess):
"""
Save model parmaters to a numpy file
"""
dump_path = './experiments/parameters/' + identifier + '.npy'
model_parameters = dict()
for v in tf.trainable_variables():
model_parameters[v.name] = sess.run(v)
np.save(dump_path, model_parameters)
print('Recorded', len(model_parameters), 'parameters to', dump_path)
return True
def load_parameters(identifier):
"""
Load parameters from a numpy file
"""
load_path = './experiments/parameters/' + identifier + '.npy'
model_parameters = np.load(load_path).item()
return model_parameters
# --- to do with trained models --- #
def sample_trained_model(settings, epoch, num_samples, Z_samples=None, C_samples=None):
"""
Return num_samples samples from a trained model described by settings dict
"""
# if settings is a string, assume it's an identifier and load
if type(settings) == str:
settings = json.load(open('./experiments/settings/' + settings + '.txt', 'r'))
print('Sampling', num_samples, 'samples from', settings['identifier'], 'at epoch', epoch)
# get the parameters, get other variables
parameters = load_parameters(settings['identifier'] + '_' + str(epoch))
# create placeholder, Z samples
Z = tf.placeholder(tf.float32, [num_samples, settings['seq_length'], settings['latent_dim']])
CG = tf.placeholder(tf.float32, [num_samples, settings['cond_dim']])
if Z_samples is None:
Z_samples = sample_Z(num_samples, settings['seq_length'], settings['latent_dim'], settings['use_time'], use_noisy_time=False)
else:
assert Z_samples.shape[0] == num_samples
# create the generator (GAN or CGAN)
if C_samples is None:
# normal GAN
G_samples = generator(Z, settings['hidden_units_g'], settings['seq_length'],
num_samples, settings['num_generated_features'],
reuse=False, parameters=parameters, cond_dim=settings['cond_dim'])
else:
assert C_samples.shape[0] == num_samples
# CGAN
G_samples = generator(Z, settings['hidden_units_g'], settings['seq_length'],
num_samples, settings['num_generated_features'],
reuse=False, parameters=parameters, cond_dim=settings['cond_dim'], c=CG)
# sample from it
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
if C_samples is None:
real_samples = sess.run(G_samples, feed_dict={Z: Z_samples})
else:
real_samples = sess.run(G_samples, feed_dict={Z: Z_samples, CG: C_samples})
tf.reset_default_graph()
return real_samples
# --- to do with inversion --- #
def invert(settings, epoch, samples, g_tolerance=None, e_tolerance=0.1,
n_iter=None, max_iter=10000, heuristic_sigma=None, C_samples=None):
"""
Return the latent space points corresponding to a set of a samples
( from gradient descent )
"""
# cast samples to float32
samples = np.float32(samples[:, :, :])
# get the model
if type(settings) == str:
settings = json.load(open('./experiments/settings/' + settings + '.txt', 'r'))
num_samples = samples.shape[0]
print('Inverting', num_samples, 'samples using model', settings['identifier'], 'at epoch', epoch,)
if not g_tolerance is None:
print('until gradient norm is below', g_tolerance)
else:
print('until error is below', e_tolerance)
# get parameters
parameters = load_parameters(settings['identifier'] + '_' + str(epoch))
# assertions
assert samples.shape[2] == settings['num_generated_features']
# create VARIABLE Z
Z = tf.get_variable(name='Z', shape=[num_samples, settings['seq_length'],
settings['latent_dim']],
initializer=tf.random_normal_initializer())
if C_samples is None:
# create outputs
G_samples = generator(Z, settings['hidden_units_g'], settings['seq_length'],
num_samples, settings['num_generated_features'],
reuse=False, parameters=parameters)
fd = None
else:
CG = tf.placeholder(tf.float32, [num_samples, settings['cond_dim']])
assert C_samples.shape[0] == samples.shape[0]
# CGAN
G_samples = generator(Z, settings['hidden_units_g'], settings['seq_length'],
num_samples, settings['num_generated_features'],
reuse=False, parameters=parameters, cond_dim=settings['cond_dim'], c=CG)
fd = {CG: C_samples}
# define loss
if heuristic_sigma is None:
heuristic_sigma = mmd.median_pairwise_distance(samples) # this is noisy
print('heuristic_sigma:', heuristic_sigma)
Kxx, Kxy, Kyy, wts = mmd._mix_rbf_kernel(G_samples, samples, sigmas=tf.constant(value=heuristic_sigma, shape=(1, 1)))
similarity_per_sample = tf.diag_part(Kxy)
reconstruction_error_per_sample = 1 - similarity_per_sample
#reconstruction_error_per_sample = tf.reduce_sum((tf.nn.l2_normalize(G_samples, dim=1) - tf.nn.l2_normalize(samples, dim=1))**2, axis=[1,2])
similarity = tf.reduce_mean(similarity_per_sample)
reconstruction_error = 1 - similarity
# updater
# solver = tf.train.AdamOptimizer().minimize(reconstruction_error_per_sample, var_list=[Z])
#solver = tf.train.RMSPropOptimizer(learning_rate=500).minimize(reconstruction_error, var_list=[Z])
solver = tf.train.RMSPropOptimizer(learning_rate=0.1).minimize(reconstruction_error_per_sample, var_list=[Z])
#solver = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=0.9).minimize(reconstruction_error_per_sample, var_list=[Z])
grad_Z = tf.gradients(reconstruction_error_per_sample, Z)[0]
grad_per_Z = tf.norm(grad_Z, axis=(1, 2))
grad_norm = tf.reduce_mean(grad_per_Z)
#solver = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(reconstruction_error, var_list=[Z])
print('Finding latent state corresponding to samples...')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
error = sess.run(reconstruction_error, feed_dict=fd)
g_n = sess.run(grad_norm, feed_dict=fd)
print(g_n)
i = 0
if not n_iter is None:
while i < n_iter:
_ = sess.run(solver, feed_dict=fd)
error = sess.run(reconstruction_error, feed_dict=fd)
i += 1
else:
if not g_tolerance is None:
while g_n > g_tolerance:
_ = sess.run(solver, feed_dict=fd)
error, g_n = sess.run([reconstruction_error, grad_norm], feed_dict=fd)
i += 1
print(error, g_n)
if i > max_iter:
break
else:
while np.abs(error) > e_tolerance:
_ = sess.run(solver, feed_dict=fd)
error = sess.run(reconstruction_error, feed_dict=fd)
i += 1
print(error)
if i > max_iter:
break
Zs = sess.run(Z, feed_dict=fd)
error_per_sample = sess.run(reconstruction_error_per_sample, feed_dict=fd)
print('Z found in', i, 'iterations with final reconstruction error of', error)
tf.reset_default_graph()
return Zs, error_per_sample, heuristic_sigma