-
Notifications
You must be signed in to change notification settings - Fork 4
/
finite_state_gibbs.py
241 lines (205 loc) · 7.77 KB
/
finite_state_gibbs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 29 11:32:16 2015
@author: s1050238
Solution
following V. Rao & Y. Teh, "Fast MCMC Sampling for Markov Jump Processes and
Extensions" (2013, JMLR)
"""
from operator import sub
import numpy as np
import scipy as sp
from mh import MetropolisSampler
from utilities import find_states, gillespie, parameterise_rates
from utilities import make_statespace, make_generator2
class RaoTehGibbsSampler(MetropolisSampler):
def __init__(self, model, conf):
self._set_model(model)
self.apply_configuration(conf)
self.n_pars = len(self.hyper[0])
# TODO: vectorise / broadcast
# self.state = tuple(_sample_gamma(a,b) for (a,b) in self.hyper)
self.hyper_updates = np.zeros((self.n_pars, self.n_pars))
self.samples = []
self.space = make_statespace(self.updates,
[tuple(o) for o in self.obs[:, 1:]])
def _set_model(self, model):
self.model = model
self.obs = np.array(model.obs)
self.updates = model.updates
def apply_configuration(self, conf):
self.hyper = np.array(([p['prior_a'] for p in conf['parameters']],
[p['prior_b'] for p in conf['parameters']]))
self.rate_funcs = conf['rate_funcs']
#self.proposals = [p['proposal'] for p in conf['parameters']]
#self.limits = [p['limits'] for p in conf['parameters']]
#self.obs = conf['obs']
self.rate_funcs = conf['rate_funcs']
def take_sample(self, append=True):
"""Overriden so that proposed samples are always accepted."""
self.state = self.propose_state()
if append:
self.samples.append(self.state)
pass
def _propose_state(self):
"""Propose parameters by sampling from the conditional posterior."""
# make generator
# sample path
# add self-loops
# create generator of DTMC
# run FFBS to draw new trace
#proposed = (0.4,0.5) # Debug
while True:
proposed = _sample_gamma(self.hyper + self.hyper_updates)
# print(proposed)
rfs = parameterise_rates(self.rate_funcs, proposed)
A = make_generator2(self.space, rfs, self.updates)
(times, states) = _sample_posterior_path(A, rfs,
self.obs, self.space,
self.updates)
if states is not None:
break
# remove self-loops from new trace
(times, states) = _remove_self_loops(times, states)
# (update gamma hyperparameters and) sample parameters
self.hyper_updates = _gamma_updates(times, states, rfs, self.updates)
return proposed
def _calculate_accept_prob(self, proposed):
"""Overriden to always return 1, although the value is not used."""
return 1
def _discretise_generator(A):
exit_rate = 1.1 * max(-np.diag(A))
B = np.eye(A.shape[0]) + A / exit_rate
return B, exit_rate
def _add_self_loops(A, states, times, space, exit_rate):
i = 0
inds = find_states(states, space)
all_times = []
all_states = []
#print(times)
while i < len(times) - 1:
dt = times[i+1] - times[i]
total_rate = A[inds[i], inds[i]] + exit_rate
n_jumps = sp.stats.poisson(total_rate*dt).rvs()
new_times = (times[i] + np.random.random(n_jumps) * dt).tolist()
new_times.sort()
new_times.insert(0, times[i])
all_times.extend(new_times)
all_states.extend([states[i]]*(n_jumps+1))
i = i + 1
return (all_states, all_times)
def _sample_posterior_path(A, rfs, obs, space, updates):
path = gillespie(rfs, obs[-1, 0], obs[0, 1:], updates)
#print(path)
times, states = zip(*path)
P, exit_rate = _discretise_generator(A)
(states, times) = _add_self_loops(A, states, times, space, exit_rate)
states = _FFBS(P, space, times, obs)
if states is not None:
return times, states
else:
return times, None
def _remove_self_loops(times, states):
# len(times) must == len(states)
to_keep = [0]
n = 1
while n < len(times):
if np.any(states[n] != states[n-1]):
to_keep.append(n)
n = n + 1
#to_keep = [0] + \
# [n for n in range(len(times)) if states[n] != states[n-1]]
# TODO: use numpy indexing, if the results are ndarrays?
new_times = [times[n] for n in to_keep]
new_states = [states[n] for n in to_keep]
return (new_times, new_states)
def _sample_gamma(hypers):
# print(hypers)
a, b = hypers # a in top row, b in bottom
return sp.stats.gamma.rvs(a, scale=1/b)
def _gamma_updates(times, states, rate_funcs, updates):
# TODO: check whether numpy can improve this (vectorised/broadcast?)
a_updates = np.zeros(len(rate_funcs))
b_updates = np.zeros(len(rate_funcs))
dt = np.diff(times)
n = 0
while n < len(times) - 1:
#dt = times[n] - times[n-1]
jump = list(map(sub, states[n+1], states[n]))
update_ind = updates.tolist().index(jump)
#props = [r(states[n]) for r in rate_funcs]
props = np.array([r(states[n]) for r in rate_funcs])
a_updates[update_ind] += 1
#b_updates = list(map(add,props*dt,b_updates))
#print(n)
#print(props*dt)
#print(props*dt + b_updates)
b_updates = props*dt[n] + b_updates
n = n + 1
return a_updates, b_updates
def _FFBS(P, space, times, obs):
n_states = P.shape[0]
dim = len(space[0]) # number of species / dimension of state-space
# init_ind = find_states([tuple(o) for o in obs[:,1:].tolist()],space)
# I don't think we actually need the above? just for the first observation
init_ind = find_states([tuple(obs[0, 1:])], space)
a = np.zeros((len(times), n_states))
a[0, init_ind] = 1
probs = np.zeros((len(times), n_states))
probs[0, init_ind] = 1
# forward filtering:
i = 1
while i < len(times):
# find which observations occured
ind = np.logical_and(obs[:, 0] >= times[i-1], obs[:, 0] < times[i])
# observation probabilities
if not np.any(ind):
probs[i] = np.ones(n_states)
else:
probs[i] = np.prod([_obs_probs(obs[ii, 1:], space)
for ii in np.where(ind)[0]],
axis=0)
# forward recursion
a[i] = (a[i-1]*probs[i-1]).dot(P)
if not any(a[i]):
return None
i = i + 1
# last observation
if obs[-1, 0] == times[-1]:
probs[i] = _obs_probs(obs[-1, 1:], space)
# sample to be drawn
sample = np.zeros((len(times), dim))
# initialise backward message
i = len(times) - 1
b = a[i] * probs[i]
if not np.any(b):
return None
ind = np.random.choice(n_states, p=b/b.sum())
sample[i] = space[ind]
# backward sampling:
i = i - 1
while i >= 0:
# backward recursion
b = a[i] * probs[i] * P[:, ind] # TODO: check if correct (a / b?)
ind = np.random.choice(n_states, p=b/b.sum())
sample[i] = space[ind]
i = i - 1
return sample
def _obs_probs(obs, space):
D = 1E-6
diffs = np.array(space) - obs
dists = np.sqrt(np.sum(diffs**2, 1))
p = 1 / (2**dists + D)
p = p / sum(p) # TODO: do we need to add an entry for an absorbing state?
return p
if __name__ == "__main__":
# set up model
species_names = ('S', 'I', 'R')
def rf1(params):
return lambda s: params[0]*s[0]*s[1]
def rf2(params):
return lambda s: params[1]*s[1]
rate_functions = [rf1, rf2]
updates = [(-1, 1, 0), (0, -1, 1)]
init_state = (10, 5, 0)
space = []