\n",
+ " \n",
+ " **v[\"dW1\"]** | \n",
+ " [[ 0. 0. 0.]\n",
+ " [ 0. 0. 0.]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **v[\"db1\"]** | \n",
+ " [[ 0.]\n",
+ " [ 0.]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **v[\"dW2\"]** | \n",
+ " [[ 0. 0. 0.]\n",
+ " [ 0. 0. 0.]\n",
+ " [ 0. 0. 0.]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **v[\"db2\"]** | \n",
+ " [[ 0.]\n",
+ " [ 0.]\n",
+ " [ 0.]] | \n",
+ "
\n",
+ " \n",
+ " **s[\"dW1\"]** | \n",
+ " [[ 0. 0. 0.]\n",
+ " [ 0. 0. 0.]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **s[\"db1\"]** | \n",
+ " [[ 0.]\n",
+ " [ 0.]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **s[\"dW2\"]** | \n",
+ " [[ 0. 0. 0.]\n",
+ " [ 0. 0. 0.]\n",
+ " [ 0. 0. 0.]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **s[\"db2\"]** | \n",
+ " [[ 0.]\n",
+ " [ 0.]\n",
+ " [ 0.]] | \n",
+ "
\n",
+ "\n",
+ "
\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Exercise**: Now, implement the parameters update with Adam. Recall the general update rule is, for $l = 1, ..., L$: \n",
+ "\n",
+ "$$\\begin{cases}\n",
+ "v_{W^{[l]}} = \\beta_1 v_{W^{[l]}} + (1 - \\beta_1) \\frac{\\partial J }{ \\partial W^{[l]} } \\\\\n",
+ "v^{corrected}_{W^{[l]}} = \\frac{v_{W^{[l]}}}{1 - (\\beta_1)^t} \\\\\n",
+ "s_{W^{[l]}} = \\beta_2 s_{W^{[l]}} + (1 - \\beta_2) (\\frac{\\partial J }{\\partial W^{[l]} })^2 \\\\\n",
+ "s^{corrected}_{W^{[l]}} = \\frac{s_{W^{[l]}}}{1 - (\\beta_2)^t} \\\\\n",
+ "W^{[l]} = W^{[l]} - \\alpha \\frac{v^{corrected}_{W^{[l]}}}{\\sqrt{s^{corrected}_{W^{[l]}}}+\\varepsilon}\n",
+ "\\end{cases}$$\n",
+ "\n",
+ "\n",
+ "**Note** that the iterator `l` starts at 0 in the `for` loop while the first parameters are $W^{[1]}$ and $b^{[1]}$. You need to shift `l` to `l+1` when coding."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# GRADED FUNCTION: update_parameters_with_adam\n",
+ "\n",
+ "def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,\n",
+ " beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8):\n",
+ " \"\"\"\n",
+ " Update parameters using Adam\n",
+ " \n",
+ " Arguments:\n",
+ " parameters -- python dictionary containing your parameters:\n",
+ " parameters['W' + str(l)] = Wl\n",
+ " parameters['b' + str(l)] = bl\n",
+ " grads -- python dictionary containing your gradients for each parameters:\n",
+ " grads['dW' + str(l)] = dWl\n",
+ " grads['db' + str(l)] = dbl\n",
+ " v -- Adam variable, moving average of the first gradient, python dictionary\n",
+ " s -- Adam variable, moving average of the squared gradient, python dictionary\n",
+ " learning_rate -- the learning rate, scalar.\n",
+ " beta1 -- Exponential decay hyperparameter for the first moment estimates \n",
+ " beta2 -- Exponential decay hyperparameter for the second moment estimates \n",
+ " epsilon -- hyperparameter preventing division by zero in Adam updates\n",
+ "\n",
+ " Returns:\n",
+ " parameters -- python dictionary containing your updated parameters \n",
+ " v -- Adam variable, moving average of the first gradient, python dictionary\n",
+ " s -- Adam variable, moving average of the squared gradient, python dictionary\n",
+ " \"\"\"\n",
+ " \n",
+ " L = len(parameters) // 2 # number of layers in the neural networks\n",
+ " v_corrected = {} # Initializing first moment estimate, python dictionary\n",
+ " s_corrected = {} # Initializing second moment estimate, python dictionary\n",
+ " \n",
+ " # Perform Adam update on all parameters\n",
+ " for l in range(L):\n",
+ " # Moving average of the gradients. Inputs: \"v, grads, beta1\". Output: \"v\".\n",
+ " ### START CODE HERE ### (approx. 2 lines)\n",
+ " v[\"dW\" + str(l+1)] = beta1 * v['dW' + str(l+1)] + (1 - beta1) * (grads[\"dW\" + str(l+1)])\n",
+ " v[\"db\" + str(l+1)] = beta1 * v['db' + str(l+1)] + (1 - beta1) * (grads[\"db\" + str(l+1)])\n",
+ " ### END CODE HERE ###\n",
+ "\n",
+ " # Compute bias-corrected first moment estimate. Inputs: \"v, beta1, t\". Output: \"v_corrected\".\n",
+ " ### START CODE HERE ### (approx. 2 lines)\n",
+ " v_corrected[\"dW\" + str(l+1)] = v[\"dW\" + str(l+1)] / (1 - beta1**t)\n",
+ " v_corrected[\"db\" + str(l+1)] = v[\"db\" + str(l+1)] / (1 - beta1**t)\n",
+ " ### END CODE HERE ###\n",
+ "\n",
+ " # Moving average of the squared gradients. Inputs: \"s, grads, beta2\". Output: \"s\".\n",
+ " ### START CODE HERE ### (approx. 2 lines)\n",
+ " s[\"dW\" + str(l+1)] = beta2 * s['dW' + str(l+1)] + (1 - beta2) * (grads[\"dW\" + str(l+1)])**2\n",
+ " s[\"db\" + str(l+1)] = beta2 * s['db' + str(l+1)] + (1 - beta2) * (grads[\"db\" + str(l+1)])**2\n",
+ " ### END CODE HERE ###\n",
+ "\n",
+ " # Compute bias-corrected second raw moment estimate. Inputs: \"s, beta2, t\". Output: \"s_corrected\".\n",
+ " ### START CODE HERE ### (approx. 2 lines)\n",
+ " s_corrected[\"dW\" + str(l+1)] = s[\"dW\" + str(l+1)] / (1 - beta2**t)\n",
+ " s_corrected[\"db\" + str(l+1)] = s[\"db\" + str(l+1)] / (1 - beta2**t)\n",
+ " ### END CODE HERE ###\n",
+ "\n",
+ " # Update parameters. Inputs: \"parameters, learning_rate, v_corrected, s_corrected, epsilon\". Output: \"parameters\".\n",
+ " ### START CODE HERE ### (approx. 2 lines)\n",
+ " parameters[\"W\" + str(l+1)] -= learning_rate * ( v_corrected[\"dW\" + str(l+1)] / (np.sqrt(s_corrected[\"dW\" + str(l+1)]) + epsilon))\n",
+ " parameters[\"b\" + str(l+1)] -= learning_rate * ( v_corrected[\"db\" + str(l+1)] / (np.sqrt(s_corrected[\"db\" + str(l+1)]) + epsilon))\n",
+ " ### END CODE HERE ###\n",
+ "\n",
+ " return parameters, v, s"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "W1 = [[ 1.63178673 -0.61919778 -0.53561312]\n",
+ " [-1.08040999 0.85796626 -2.29409733]]\n",
+ "b1 = [[ 1.75225313]\n",
+ " [-0.75376553]]\n",
+ "W2 = [[ 0.32648046 -0.25681174 1.46954931]\n",
+ " [-2.05269934 -0.31497584 -0.37661299]\n",
+ " [ 1.14121081 -1.09244991 -0.16498684]]\n",
+ "b2 = [[-0.88529979]\n",
+ " [ 0.03477238]\n",
+ " [ 0.57537385]]\n",
+ "v[\"dW1\"] = [[-0.11006192 0.11447237 0.09015907]\n",
+ " [ 0.05024943 0.09008559 -0.06837279]]\n",
+ "v[\"db1\"] = [[-0.01228902]\n",
+ " [-0.09357694]]\n",
+ "v[\"dW2\"] = [[-0.02678881 0.05303555 -0.06916608]\n",
+ " [-0.03967535 -0.06871727 -0.08452056]\n",
+ " [-0.06712461 -0.00126646 -0.11173103]]\n",
+ "v[\"db2\"] = [[0.02344157]\n",
+ " [0.16598022]\n",
+ " [0.07420442]]\n",
+ "s[\"dW1\"] = [[0.00121136 0.00131039 0.00081287]\n",
+ " [0.0002525 0.00081154 0.00046748]]\n",
+ "s[\"db1\"] = [[1.51020075e-05]\n",
+ " [8.75664434e-04]]\n",
+ "s[\"dW2\"] = [[7.17640232e-05 2.81276921e-04 4.78394595e-04]\n",
+ " [1.57413361e-04 4.72206320e-04 7.14372576e-04]\n",
+ " [4.50571368e-04 1.60392066e-07 1.24838242e-03]]\n",
+ "s[\"db2\"] = [[5.49507194e-05]\n",
+ " [2.75494327e-03]\n",
+ " [5.50629536e-04]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "parameters, grads, v, s = update_parameters_with_adam_test_case()\n",
+ "parameters, v, s = update_parameters_with_adam(parameters, grads, v, s, t = 2)\n",
+ "\n",
+ "print(\"W1 = \" + str(parameters[\"W1\"]))\n",
+ "print(\"b1 = \" + str(parameters[\"b1\"]))\n",
+ "print(\"W2 = \" + str(parameters[\"W2\"]))\n",
+ "print(\"b2 = \" + str(parameters[\"b2\"]))\n",
+ "print(\"v[\\\"dW1\\\"] = \" + str(v[\"dW1\"]))\n",
+ "print(\"v[\\\"db1\\\"] = \" + str(v[\"db1\"]))\n",
+ "print(\"v[\\\"dW2\\\"] = \" + str(v[\"dW2\"]))\n",
+ "print(\"v[\\\"db2\\\"] = \" + str(v[\"db2\"]))\n",
+ "print(\"s[\\\"dW1\\\"] = \" + str(s[\"dW1\"]))\n",
+ "print(\"s[\\\"db1\\\"] = \" + str(s[\"db1\"]))\n",
+ "print(\"s[\\\"dW2\\\"] = \" + str(s[\"dW2\"]))\n",
+ "print(\"s[\\\"db2\\\"] = \" + str(s[\"db2\"]))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Expected Output**:\n",
+ "\n",
+ " \n",
+ " \n",
+ " **W1** | \n",
+ " [[ 1.63178673 -0.61919778 -0.53561312]\n",
+ " [-1.08040999 0.85796626 -2.29409733]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **b1** | \n",
+ " [[ 1.75225313]\n",
+ " [-0.75376553]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **W2** | \n",
+ " [[ 0.32648046 -0.25681174 1.46954931]\n",
+ " [-2.05269934 -0.31497584 -0.37661299]\n",
+ " [ 1.14121081 -1.09245036 -0.16498684]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **b2** | \n",
+ " [[-0.88529978]\n",
+ " [ 0.03477238]\n",
+ " [ 0.57537385]] | \n",
+ "
\n",
+ " \n",
+ " **v[\"dW1\"]** | \n",
+ " [[-0.11006192 0.11447237 0.09015907]\n",
+ " [ 0.05024943 0.09008559 -0.06837279]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **v[\"db1\"]** | \n",
+ " [[-0.01228902]\n",
+ " [-0.09357694]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **v[\"dW2\"]** | \n",
+ " [[-0.02678881 0.05303555 -0.06916608]\n",
+ " [-0.03967535 -0.06871727 -0.08452056]\n",
+ " [-0.06712461 -0.00126646 -0.11173103]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **v[\"db2\"]** | \n",
+ " [[ 0.02344157]\n",
+ " [ 0.16598022]\n",
+ " [ 0.07420442]] | \n",
+ "
\n",
+ " \n",
+ " **s[\"dW1\"]** | \n",
+ " [[ 0.00121136 0.00131039 0.00081287]\n",
+ " [ 0.0002525 0.00081154 0.00046748]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **s[\"db1\"]** | \n",
+ " [[ 1.51020075e-05]\n",
+ " [ 8.75664434e-04]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **s[\"dW2\"]** | \n",
+ " [[ 7.17640232e-05 2.81276921e-04 4.78394595e-04]\n",
+ " [ 1.57413361e-04 4.72206320e-04 7.14372576e-04]\n",
+ " [ 4.50571368e-04 1.60392066e-07 1.24838242e-03]] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " **s[\"db2\"]** | \n",
+ " [[ 5.49507194e-05]\n",
+ " [ 2.75494327e-03]\n",
+ " [ 5.50629536e-04]] | \n",
+ "
\n",
+ "
\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You now have three working optimization algorithms (mini-batch gradient descent, Momentum, Adam). Let's implement a model with each of these optimizers and observe the difference."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 5 - Model with different optimization algorithms\n",
+ "\n",
+ "Lets use the following \"moons\" dataset to test the different optimization methods. (The dataset is named \"moons\" because the data from each of the two classes looks a bit like a crescent-shaped moon.) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAD8CAYAAAD0f+rwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXdYFNfXgN872+gCAhbsBXuLvccYuyZGY3piqmmmmJhuen6ppnfTe4wxMbG32Dt2RUWwgICAIH3rzHx/rKLrzirgCug37/P4JEy59wzszrnn3FOEqqro6Ojo6OhcSkhVLYCOjo6Ojo6/0ZWbjo6Ojs4lh67cdHR0dHQuOXTlpqOjo6NzyaErNx0dHR2dSw5dueno6OjoXHLoyk1HR0dH55LDL8pNCPGtECJLCLHLx/nLhRD5QohtJ/694I95dXR0dHR0tDD6aZzvgU+AH89yzSpVVUf6aT4dHR0dHR2f+EW5qaq6UgjRyB9jnSQqKkpt1MivQ+ro6OjoXORs3rz5mKqq0ee6zl+WW1noKYTYDqQDk1VV3X22ixs1akR8fHzlSKajo6Ojc1EghDhclusqS7ltARqqqlokhBgOzAKan3mREGICMAGgQYMGlSSajo6Ojs6lRqVES6qqWqCqatGJ/58HmIQQURrXTVNVtYuqql2io89pdero6Ojo6GhSKcpNCFFbCCFO/H+3E/PmVMbcOjo6Ojr///CLW1II8RtwORAlhDgCvAiYAFRV/QK4FrhfCOECrMANqt5rR0dHR0fnAuGvaMkbz3H+E9ypAjo6Ojo6OhccvUKJjs5Fgi07j5L0Y+hODx2dc1OZqQA6OjoVIH9fKivHv0nutmSEJAiuF02fb5+gVp92VS2ajk61RbfcdKo1R1dsZ3bPB/kxeDh/NLyB3R/ORFWUqhar0nAUFDO3z8Mc27QPxeFEtjkoSEpj0dCnyd9/pKrF09GptujKTafakr50C4uGP8OxDXuRrXaKU7PZ8ty3rH3wQ/L3H6HocGZVi3jBSf55MbLNAWe4ImWHk93v/VlFUunoVH90t6ROtWXj458jW+0ex1wlNhK/nEPyj4tBVQltUof+v00hsl2TKpLywpK7LRlXsc3ruOqSydmyvwok0tG5ONAtN51qiaqqHN950Od52WpHtjnISzjM/P6TsOcVVaJ0lUd464YYgixex4VBIqJto8oXSEfnIkFXbjrVEiEEprCgMl0rO5wk/7joAktUNTS7bTCSydvBIllMtHlsXBVIpKNzcaArN51qS8v7RmEINJ/zOrnEzvFdvq28ixlLZBjDl79PWIt6GAItGIMDCKwTycCZLxPRplFVi6ejU23R99x0Kp3cHcnsmzYXa+Zx6g3tSpObBmIM9Ha9dXr5dvL2pJC+OB5hMCDbHahO2es6Y3AAkR2bVoboVUJkh6aMSfiewgMZKA4nNVrUR0j6ulRH52yI6poQ2qVLF1VveXPpsXfaHDZO+gzF4USVlROWSE1GbfgUS0So5j15e1PIid+Hoiisf/AjzwALITBHhDDuwC+Yw4Ir6Sl0dHSqCiHEZlVVu5zrOn35p1Np2I7ls/HRT5GtdlTZnavmKrZRnJLFtld8N3EPb9mAprcMovltQxg053VCmtTBEGBGspiI7NSMEas+1BWbjo6OB7pbUqfSODJvA8LovZ5SHE4O/PYf3d9/8Jxj1O7fgWv3/0RxahaS2URQ7Ui/y1lyNJfi1CzCmsX6tCZ1dHSqN7py06k0VEVBlbXd4OVxjwshCGlQy19ileIssrLiltdJX7gJyWJCcbhodvsQenz0EJLR4Pf5dHR0Lhy6W1KnUlBVlaMrd3glZQNIJiONx11e+UKdwYqb/0fawk3IdifOghJkm4OkHxex5fnvqlo0HR2dcqIrN51KIfmnxRyasULzXEDtCDq9NL6SJfKkJP0Y6Ys3o9idHsflEjt7Pp2F4nRVkWTVi/z9Rzg4YwVZ6xP07gQ61RrdLalTKex6/0/NMlKS2UiHZ28mIKpGFUh1iqLDmUgWk7uO4xkoTheOgmICalatjFWJbHew7PpXSV8cj2Q0oqoqwbFRDF70NiH1Y6paPB0dL3TLTadSsGfna59QwVlorVxhNAhrXk9TsQEYgwIwh4dUmiyO/CISv57L9v/9QvrSLdXCQop/9mvSF8cjWx04C0twFVkpSEpjyajnqlo0HR1NdMtNp1KoPaADB39fVpoCcBLJbKRWn7ZVJNUpAqJq0PTmgRz4fRlyyal9QWNQAB2m3IxkqJyAkqOrdrB45LOgqLisDoxBFsJbN2To0qmYggMrRYYzUVWVxGlzka2eyl+VFQqT0jm+6yARbRtXiWw6Or7QLTedSqHjC7dhDAoAIUqPGQLNRPdoTXT3VlUo2Sl6fT6JFhNGYgyyYAgwY64RTKeXx9Pm0WsrZX7Z4WTp1c/jKrS6XbiKgqvIyvHtyVUa1KI4Xbg0AoEAhMmA9WhuJUuko3NudOWmUynUaF6Pkes/of7IHhhDAgmsFUHrSdcyaM7/EKcpvKpEMhnp/t4D3JT7D+MO/sKN2X/T9vHrKk2+jP+2ajZile1Okr5fWCkyaGEwmwhtVFvznGJ3Etnh0i19pnPxois3nUojvFVDenz8ELV6t8WWU8Cut35n/oDHyN154ILNac8twFlcvj09g9lEYK3ISs9tO9veoy/LqbLo+u79GM6o/2kIshB3zwgCosOrSCodHd/oyk2n0nAWWZnT/UHSl2xGdcmoskL2+j3M6/MIxUey/TrX0RXb+avV7fxedxy/Ro5m0bCnKUk/5tc5/E3t/u1RHNopB3Uu71jJ0njS8OreDJjxIhFtGyOMBgLr1KTza3fS/f0HqlQuHR1f6AElOn7Hlp3H3i9mk7F8GyENa9H6oWuo2ak5yb8swVlk9Qoqke0Odn84k27v3HfOsQuS0shcs4uAqBrEDu6i2essd+cBFo94FlfJqdSD9CWbmdP7Ycbu+wGD2XT+D3kBCIyJoM3j40j4YGZp2oQwSBiDLHR9594qlg7qD+9O/eHdS39WXDJFh45iDg/BEhlWhZLp6HijKzcdv1J4IJ3Z3R/EVWxDtjkQksTB6cvp9fkjZG/Yo5nrpjhcZK3dddZxFVlm9Z3vcGjGCoRRQkgSksnI4AVvEdU5zuPaHa//4hXWr8oK9pwCUv5ZS+Nx/cv9XIosV0rEZOdX76Rmp+bsevcPrBm51O7Xng5TbiGsWWy5xlFkmZz4RBRZIbprC81FwPmw//sFbJz8BYrdieKUqTOwE/1+eLrK8xV1dE6it7zR8StLrp7CkbkbvAIjjEEW2ky+jl1vT9fOJxNQZ0Anen0xSfNFvvuDP9k85VuPMH0AS2Qo16fP8LDGZrYcT0HiEU35Oky5hcteuaNMz6K4ZLb/72cSPvwLR14RIY1r0+XNCRVSjpVJ+tItLL/xNXe1FQFCkuj7/VM0uKqXX8ZPmb2W5Te+5vG3kExGarRqwNVbp1WbACGdSxO95Y1OlZC2YJNmxJ8wGghrXg9h8PGRUyFj+TZm93gQW453wnfCR395KTYAxSlzZP5Gj2O+rBxjSAChjeuU4SncrL3/fXa+Mx1HXhEARQePsuqOtzj4x3Kva3N3HuDQzJVV3hG8KCWTpaOfx34sH2dhCc6CEhx5RSy/6TXy9hz2yxxbX/zB62+hOF0UHsgga+1uv8yho3O+6MpNx79IvlftgdHhDJr7BgEx4QizhptMUZGtDhKnzfU6Zc8t0hxTlRXs2Xkex9o/fSOGIO/O3pLZRKPrymZ1lRzNJfnnJV4vcbnETvxT007JlVfE3D4PM6fnRFbf9Q6zezzIvP6P4sgvoiT9GFtf/oFl17/Cznemayptf7Pvq3koGt3KFbuThI//9sschcnp2icUlfy9KX6ZQ0fnfNGV20WObHeQ+PVc5g98nEXDnuLgH8s1LafKosHVvRFaIfSqSq1+7andrz3Xp/1BdNeWmvfLVjuZ67xX/zE9W2ter6oqMb09K5zU6tOOXl9MwhQWhCk0CEOQhcA6Nen+/gMYA72VnhbHdx7AEGDWPFeUmoXscBdYXjX+TY7F70Musbs7CZTYyd64lyWjX2Bmi/HsePM3Ds1YwZYXvuPPZrf6zXryRUFiKorD6XVclRWfrtryEtJYO+cNSRAWV88vc+jonC+6cruIke0O5vWfxIZHP+Posm2kLYxn9V3vsGzcy1VWj7D7+w8QWCsCY3AA4C6vZQi00O+nZzGeUBaSwUB0t5YIjSAHYTJquhU7v3G3u8LJaRiCLNQf0Z3wVg29rm92yyBuyJxJgzF9UF0KzqIS1k38iD8a3limvLrgetE+OwGYggOQTEZsOfmkLYr3Ct9X7E4yV2zHVWwr7TKg2J0484tZOPjJC/q3ienZWttqtZiI6d3GL3N0emm81xzCZCCkYQy1+rTzyxw6OueLrtwuYpJ/XkLe7kMeIe+uYhtpi+LJWLatSmQKqlOTMXu/p+vU+2h8wwDaPDaOa3Z94xXM0PL+q5BM3haeZDLQ6oGrvY7X7NiM4as+oO6gzhhDAgmKjaLjlFvp/+sUn7IcnrGCwzNWojic7pJWhVZK0o6xYODkUsvLF+GtGhLRuqGXFWoItNBy4miEENiy87Wt1LNQknaMXe/+Ua57ykOz24diDApASKd9tYXAEGCm5f3ev9eK0HB0H7q99wCmGsEYQwKRLCZq923P0KXv6sEkOtUGPVryImb+wMc56kOJtbh3JL0+n1TJEpWP1HkbWHnr66V5b8Ig0e+nZz1yqc6Hv9vfRd6uQ17HTaFB9PnuSRqN6XvW+0uO5rJk1HPk7TmMZDKi2Bw0GtefPt88gWQykrFsKwsGTi63XAEx4dx4dKbXcVeJjT2f/UPyz0sQkqDZ+CG0uHdUqcVbVgoPpLPmvvdLPxsxPdvQ68tJpRZuxrKtbH7uG47vPEhgrQjaPXUDcXePKLdikh1OCg9kYIkIIbBWZLnu1dGpKGWNltTz3C5ifOYuSQKpGiUqu6x2bMfyCaod6SFz/eHdufHoTLI37gUgultLv+ZjWTO0C/rKThcl6TnnvD+odiRXbfqc47sOUpyaRUT7JgTHRgNuRbT0mhc07xMmg9v16NLe+7Rl5aEqiod1JdsdzO37CPl7U0qr72/e9w0Hf1/G8JUfIJmMOAtL2P/dAg7/vRpzZCgt7xtF7CDv73hok7oMXfQOst2BquKhHI8s2Mh/Y18q7YheeCCDjZM+ozA5nS5vTjjn7+R0DGYT4S0blOseHZ3KQlduFzHN7xhK1ppdXonRxgAzTW++soqkOoVsd7Bh0mck/bAQhEAyGGj3zI20f+rGUitBMhmp1fvCtLyJ6tqCtAWbvI5LBomoLnEad2gT0baxV0uXlH/X+tw7C6gZhmxz4Mgr1jxvDg/xdBsCB377j4LEIx5tZWSrneO7D3L479XUHdSZ2V3vp+RobmkEZ/qieFo+cDVd39JWSgaLt8W3YdKnpYrtJK4SOwkf/U27J2/QK43oXDLoe24XMY3H9XfvQZ0I3kAS7mK2944kupt2NGJlsvruqST9sAjZ6nBHExaWsOO1Xy7ontPpXPbqnUiBni94Q4CZmpc1P+82O7ZjBagaIffgjkzkLC6++iN6eB07NHOlZvUWV5GNQ3+tYuc70ylOO+aRmuAqtrHn478pSEork8yyw0nBfu1rJYuJnC37yzSOjs7FgG65XcQISeKKmS+TsXQLh2auRDKbaHrTwGrRH82amcvhmau8qpG4SmzseOM32ky6VrOcVUFSGjve+JXMNbsIaVCLtpOvI3bwOd3rXhQfyWbL89+inhbJaAgwE3fPCLq8cbfX/pI9twBhNGAOCy7T+LX7ttPO6ZMEtfq1RxgMHJqxAs6w7oRBouMrt3vdZgoN0p5ICEyhQRycvqw08vJ0VFUldfY62kw6d885yWTEYDF7WW4AqkvWq/vrXFLoyu0iIC/hEHu/nENJ2jHqDLyMZrcOwhTi7soshKDulZ2pe2XnKpbSk4KkdCSLSbPUlqvYirOgBEtEqMfx3O3JzO37CLLVXpqXlbV2F51eu5O25WgY6rLamdPjQayZxz2KNAujgTaPjvVIKchan8Cae96lYP8RUCGmdxv6fPukz/5lJ4ns0JTYQZ1JW7z5lDUlBMagAC579U4MZiPpi+JxFltLLTxDkIW4u4YTplElJe6u4aTOXuftYg400/yOoWSu3K4phxCizBGbQgia3zGU/d/O9/y7SILg+jFEtG9SpnF0dC4G/OKWFEJ8K4TIEkJoVr8Vbj4SQiQJIXYIIS7zx7z/H0j6eTH/dn2AvZ/9w+G/VhH/5Jf83fZOrFnHq1q0sxLSqJampQHuvSAtS2X9wx/jOqNrgKvEzpbnvsGRr12hRIuD05fhyC/W7D5wuku0ICmNhYOeIG/3IRSHC8XpInPlTub2nFimHnAD/niRji/cRnCDGEw1gqk/qiej1n9CeMsGhDapy9Xbv6LF3cMJbVaX6B6t6PPNE3T/4EHNsepc0Ym4e0ZgCLQgDBLCaMAQaKH1I2Op1asNzcYPwRCoHTXZ8Jo+Zf7ddH3nXmL6tMUQZMEYHIgpNJDgetHVqmmsjo4/8Jfl9j3wCfCjj/PDgOYn/nUHPj/xX52z4CgoZu2973u4kVzFNmS7k/hnvqLvN09WoXRnJzg2mrqDu5C2cJOHkjMGWWgzaaxXI1BVVclco90ZQDIZyVq7m3rDyvaRObZpn+b+leqUyV6/p/TnnVP/QD5DAauKgrPIysHpy4m7c9hZ55FMRto/eQPtn7xB83xI/Rh6fvpomWQWQtD9vQdofsdQUmatAUnQaEzf0vD9NpOu5fCsNeTvTcFVZEUYJCSzic5v3EVwvegyzQFgDLQwdNE75O5IJmdrEsH1Y6hzeQevABcdnYsdvyg3VVVXCiEaneWSq4EfVXd42XohRLgQoo6qqhn+mP9SJX3xZiSjgTPDFlSXzOE/V1Vr5QbQ/5dnWXX726TOWYfBYkJxuIibMJIOz9+qeb1kMvq09s6sTnI2QpvFYgi0eO8tCUFY81PVT3Li96G6vINCXMU2cjYnwjmUmy9cVjuy1Y45IrTc1lBkuyZEtvN2DxoDLYxc+zEp/6whde56LJGhNL99qFcUZ5nnad+UyPZNK3Svjs7FQGXtucUCqaf9fOTEMQ/lJoSYAEwAaNBAz585MxjB4xTVM/n+dEzBgVwx40Vs2XmUpOcQ0ri2z4ANIQRNrh/Agd//8ypnJZlNXvUjz0azWwex9cXvvY4bAs20ffy60p9rtGxAzrYkUDx/l4YgCzVa1C/zfCex5eSz5p53OTJvA6gQXD+aHp88TL2h3co9lhaS0UCjsf1oNLafX8bT0bmUqVa+CFVVp6mq2kVV1S7R0WV3tVyq1GjV0MttBu7AiIZX99a8J39fKns//9fd9bqw5EKLWCYCosOJ7ND0nJGI3d5/gNCmdTGeCJYxBlkwhgYycNarXm7Ms84XVYMhi94mqG5NjCGB7gLKNYLp8/Vkorq0KL2u7ePjNIsjS0YDTW8dVOb5wO3OnNd/Ekfmbijdvys8kMF/Y18ia31CucbS0dE5fyrLcksDTl8K1ztxTEcDV4mNFbe87k5APhluLgDVbVWYawTT5YzEXVVRWH33VA5OXwYIhEFi7X3vc8WfLxE7pGulP0NFsESEMnr71xyZt4Fjm/YSVC+axtcPwBIeUu6xYnq05rqU38nZmoRsdxLVJc6joSlAzU7N6ffTs6y5ZyqqU0ZVFAKiwxkw40WvSM5zkb50C8UpWV7FlmWrna0v/cCQBW+V+xl0dHQqTmUpt3+BiUKI33EHkuTr+22+WXPve6Qt2OQZri0kAutE0PaxccTdNQxzDc8X/q73/yT55yVee0j/jX2J645Mr5CCqAoko4EGV/Xy2TXaUVBM0o+LyFy9i9AmdWgxYaTPsH0hSUR1PnslkkbX9KHBqJ7k7kjGGGCmRquGFYoazN2ejGzzzh8DOL7j3F0IdHR0/ItflJsQ4jfgciBKCHEEeBEwAaiq+gUwDxgOJAElwB3+mPdSxJFfxKE/V3oHVigKjpwCTcWWuyPZ3UBT0diHE3B45kri7hrudcpZbOXQnyspTsmiZqdmxA7rpplYXV0oSslkTvcHsRcUo1gdCIPE7vdncMWMl6g/sqfX9elLNrPlhe/I35tCcINadHzhNs1iyZLRQNRlZS/HdSb2vCL2fDIL1UctyZBz5Mzp6Oj4H39FS954jvMqoJ3go+OBNfO4z6hBYTJizcrzUm6r75qqrdgAl92BPbfQ63jOtiQWXPE4ikvGVWzFGBxIcGwUw1d/SEDNGqfutzk4OH0ZaQs2Elg7kri7RxDRptH5PeQ5UFWV/+bvY/bM3RTkWYmpHcq4Wztx/PUvsWbllQbaqLKCKissGf0816f8TlDdqNIxDs1cycrxb5YmWDvyDrDqtjcoPpJFm4fH+lXejY99hvWodpFmQ6CFDlNu8TimuGQylm3Flp1PTM/WhGokdev4pig1i/yEw4Q0rk2NuPIH/uj8/0CvUFLNCK4f4ztKUlXd50/DkV90VreXwWikdv8OZwyjsnT08zjyTiVGu4qsFB7IYP3Ej7j8t+cBt0Uyp8eDlKQdw1VsQxgk9k2bS/cPH6TF3SMq+ITn5s+ft7Fozh4cdreLNSOtgC/eW03T7dnU0vrdKCrLrnuFEas/Kn2+DY984lGHEU4khE/5jhb3jCxzR+5zoaoqB37zjvA8Scv7Rnm08MndkcyiIU/hKrEDKopTpvF1l9P7m8nV2mquDsh2BytvfYPUOeuRTqSWRHVuzsBZr+oFn3W8qFbRkjrufKY2j4/zyusyBgW4j58Z3XeO/aGaXeO8iijnbNmvac0pTheH/1qNo6CYvV/O5t8u91GQlFaaEK3KCrLVzoaHP8GWk1+Bpzs3JcUOFs4+pdhO4nDIJLfq7DMBInvj3tKmrbas45rPByAkQd6ew/4TWFV9d+wOC6LuoFNl0RSXzMLBT2LNPI6zsARnoRXZ5uDgnytI+Ohv/8l0ibJx8pekzl2PbHPgzC9GttrJ3rCXZde/WtWi6VRDdOVWDen04ng6vnAr5vAQJJMBc3gIHV+4lU4vjve61hwWTM0ucZpKzhQaRFSXlvxedxy/xlzD6numUpKR465w4aMihSLL/Nv5PjZN/oKiAxma7k5hlDgyd8P5P6gG6an5GI3asrksAbhM2iWohCRKA3CMIYGoivb+l+J0+XWVLyTJZ6FqxeEipmfr0p/TF8d7tLQ5iVxiJ+GDP/0m06WI7HC6a2Ke8ftTnC6y1uyiKDWriiTTqa7oyq2KUVWVoyt3sP7hj1n/6KdkrU9ACEG7J2/gpmN/c9OxWdx0zN1ry1cUX99vn8QcHozhhKtNspgwBgdgia7B3s/+wXo0F/uxApJ+WMS/l91LSOPaKC5tayOgZg2KU7M0y1edEhqchVZs2Xnn/fxnEhYegMtHYIZkMmDwIXdw/RjMJ8L3TcGB1B/RA8ns6XUXBomIto3PWRS5vPT46CGMwQEIw6mvkzHIQqdXbvfYH7WeaFKqhf24tqWp48ZZUOLzdydZTJSkHatkiXSqO8JXw8WqpkuXLmp8fHxVi3FBUVWVVbe/xeG/Vrn3YIS70Wiz24fS4+OHyhWSbs8tIPHb+RzbuJcarRoQHBvFxslf4CryVFKGADPtn7kJS2Qom56aVrovJSQJQ4AZQ5AF+7FzuByFQDJKICRCm9Sh91eP+7Xh6KtPzedAUg6KfOqzaTIZ6NW/MV1tKWx+7ptTvdSEO2hj4F+veLTGsR8vZMGVkylIPIKqqkgGiYDocIYue4+QM/Yt/UHensNsf/0XstbuJrh+DO2euN6rb1v+vlT+uWyCpvVWe0BHhi191+9yXSgKD6STs2U/gXVqEtOrzQUvuqwqCr/Vvlbzs2kIMHN9+oyLJt1F5/wQQmxWVfWcfbB05VaFpM5Zx/IbX/NucxIcwKC5b1C7X/sKj73mvvdInDZX81x0j9aMXPsxaYvi2fHWbxQdOkp0t5Z0eO4WFg17+tyrYCE8gl6MQQFctfmLCpWs0iLvuJV3XlpCdmYRQoAiq7RoE8NDT1+OxWIkbeEmtr/+C4UHjxLZvgkdX7yN6K7ezVlVVSVr7W6O7zpIWNO61LmiU5UXCF523cukzt3gUffSEGRh2LL3NJ+huqE4Xay87Q1S/lmLZDaiKiqBtSIYsujtCx71ue+rOWyY9JlHoJAxKIC4CSPo/t4DF3RunepDWZWbHi1Zhez/foF29+USO0k/LTov5ZaX4DtoIrBWBACxg7t4NQJtcuMVJHz8t3cqgiSI7NiU/IQUrx5tst3BzqnT6fPV5ArLezrhEYG89sFIDiXnkp1ZRL2G4dStdyo9IXZIV82qK6qqsufTWeya+ge2rDwi2jWmy5v30PLeUX6Ryx/0/3UKO9/+nT2fzMKRV0RU1xZ0fee+i0KxAWx77SdS/l2HbHOUfg4KS2wsGvoUY/b+cF4WXElGDulLtiCZjdQf3t2rLVKLe0YimYxsmfItJRm5mMNDaDv5Oto/pd2VQef/N7pyq0Jkm3YFfFRV03VVVtKXbHZXtdfAEGim1cTRmudcNgfBDWu5+4kZJFRZQUgSwigRWDuS4sNZms1HVVkhZ/P+CsurhRCCxs1q0rhZzTLfs2HSZyR+Pbd0ZX9s0z4Wj3yOgX+/UqFu3hcCyWigw7M30+HZmy/4XKqqkrUugYwlmzGFBtHouv4Ex55fzdY9n/zj3W1BUSnJyOXYpn1ekbllZdurP7Hj9V8QJuMJa12h3w9PexWJbn77UJrfPhTZ4UQyGfUedDo+0ZVbFdLkhgEcXbHd2y0ZEkjj6y+v8Lh7Pv/Xp3Ks2ak5dQd694p1FluZ1+cRCpLSTu3DGSQMQRZUp0xxylmi0SRBjVZV28XBmnWcxGlzvK1Kq50Nj33GmF3fVpFkVYPikvnv2pfIWLoFl9WOZDKy+blv6P3V4zS9+coKj3t6buTpCEn4TGQ/F2mL49n59u/uIuGneQxW3vYGUd1aau6RnlknVEfnTPRoySqk8fUDiOzYzCOnzRgcQEyvNtQbXvFervl7U3ye87UvtufTf8hPTPWPg61tAAAgAElEQVRQtKqs4DqRi3U2DAFm2k2+7qzXXGhyNiciWbRfePkJh1Fk775tlzKJX88jfckW999TUVHsTmSbgzX3vEtJBZUQQHibhprHFbuTmp2bV2jMhI/+0m4uK6sk/bCoQmPq6OjKrQqRTEaGLp1K948mUrt/e2oP6EjPzx5l0JzXK1ytInP1TgqT0jXPGYIDqDdMu7dY8s+Ly+cKFQJjSCCWqDD6//IcNTtV7MXmLwJiIlB9KDBjcECVB5JUBGeRleRflpDwySxyd56qQqOqKtkb95L002KyN+xBKyhs7+f/IJdopHMIOPTnygrL1G3q/aUpJycxBFlocvOVFXZ5Wo8e1zyuOJxYMyuuiHX+f6O7JS8gjvwikn9ZSt6ew0S2b0qTG6/AdKJX2UkMZhNxdw4jroJdn89k6ys/+qyYEVgrggY++sCV9+Uf2bEpfb99kvC2japF2aialzUnqG4UBUlpHonnhkAzLSaMvOj2ZtL/28rS0e4yaKpLBklQf3h3enz6MIuHP0P+3tTSqNWw5vUYsvhtz5qgPvIUFaeMq8haYbliB3dh4KxXiH9qGsd3HcJSM4zWj4yh3RPXV3zMIV05vuugVxCTMSSQOgM6VXhcnf/f6MrtAnF810Hm9X8UxeHCVWzDGBzA5ue+YeTajwlrFnvB5vUZJSkJmt8xFMmk/Sdvdttgtjz/nXewgAbG4ADaPHotkR2aap7PWp9A1roEIjs2pU7/DpViNQkhGDzvDRYMnIw9twBVdbtV6wzoSOfX77rg8/sTZ5GVpaOf91JCqfM2cHzA4xTuT/NYwOTtPsTKW95g8Pw3S481uLo3ez6dpdHV3EjsEO/gmqLDmeQnphLWvN45k9xjB3UhdpD/AnRaP3wN+6bNweEqRJXdidqSxURokzperY9ku4PC5HQsUTUIjInwmww6lx66crtALL/hVRzHTytMXGzDZbWz4pbXGbX+0ws2b1izWKzpOV7HjcEBZ63m3/KBqzn4x3LyEg67X6qSwBBgplafdmSu3IEqKyguF8Ygt2uz6c0DvcYoSDrCnJ4PYc8pKD1mjgxlxKoPCW+lvVfjT0Kb1OXa5J85unIHJUeyqdk5rlLm9Tcp/67VPC6X2Mnfc5gzC2wqThcZy7dhO5ZPQJTbemv31A0c+O0/7LkFpQrOGGShZteWFKdmE9qkDuYaITiLray48TV3CL7FhGJ3UueKTlw+/XlMwYFninBBCIyJ4KrNX7D5uW9Inb0Og9lE09sG0emF2zw6sO/+aCZbn/8eUJEdLmr360D/X54tfWYdndPRk7gvAIUHM/i77V2aVpBkNnF96u8ERIdfkLn3fTWHtfd/4OGaE5JEYN1IxiX/4tNygxOFk/9ezaG/VmEOC6L5ncOI6dGaguR0Dv6xDFeJnfojehDdvZWXm092OPktZgzOghKvcS2RodyQObNauC9PUpBn5a/fthO/LgUhCXr1a8zV17cnKNizdmVebgmL5+5j7+5MYmqFMHhUq3KlJ1SEPZ/OYtMTX54zkOd0jCGBXLXpc4+AIVt2Hjun/uFWlopKcWoWwmRACIHicNF16n1krtlFyt+rPeaSLCYaju5d2h2iOpD861LWTnivtDg2uPesw9s24qr4Ly46t7NOxdErlFQheXtTmN31fs19D0OAmbH7fzzvfCMtCpLT+afTBC93liHQzOgdXxPW9MK5Qw/9tYpl417WbNcjDBKD5ryumXhdFZQUO3j24dkU5NmQT7jBjEaJ6FohvPL+SMxmtxI+mlbAy0/Ow+GQcTkVhACT2cD4Cd3oM7DZBZPv+K6DzO7+oPfiSAgko0FzT9VUI5gbM2dqhsgXp2Uzs8V4rxZAhiALitN1qpTZaUgWEzdk/FltSlrNbDGegv1HvI4bgwMYuvTdCufX6fgfh0Nm19Z0bDYnLdvWJrJm0LlvKgdlVW4XXwhZNURxusjbm4I1yx31VSOuHsYQbZdOUN2aHk01/cmON3/VtBaF0UD+Ht/pAf6gMDndZx86VVEo0XCVVhUrFu+nuNBeqtjCcrNosW4J9X79mdnjXqPwgDva9KevNmItceJyuq9TVXDYZX6ctgm7XTtoxx9EtG1Mg6t6YQg6FZUoJAlTaCDtp9zicRwAyR1YsnDQE6Qt9l4QJn2/sHQv63Rkq91nk1vJZMSWqR3FWBUU+6r6L4Sm0tOpGhJ2ZPDQ+Bl8+cFqfvh8A0/e9zfTf9isGdF7odGV23my94t/+TVmDLO7PcAfDW9kwaAnsOcU0OebJzAEWUqDKYRBwhhkoffXky+YCyVz1U7Nl5ir0Er2hj0VHteRX8T+7xew+8OZHiHppxPeuiH4CBwRQhBVjVbWO7ak43C4rZVaKfvpsG4hURkpBOfnkj93NbM6TuDY5kQSdhzV1NeSQZCYULEWK6qqkrU+gb2f/0vqnHUoLu30hX4/P0PXtyYQFlePgJhwGl3fn6viv6DT87fS7/unqNGqAcJkdEdMKirOghIyV+1k6TUvsP/7BR5jFaVma3Z2R8X3S0dVCW5Yq0LPeCEI8RXkoqrUaFm1BQR03BQX2fngf8uxWZ3YrC5sNhdOp8LSeYnEr7uwi2st9ICS8+DQzJVsnPyFh7snY8U2Flw5mau3fcXItR+z853p5O0+TGTHprR74voLGuAQXC+agkQN102QhaAKukGPzN/gdjcKgeKSEQaJ+iN70v+XZz320GKHdiWoTqRm0eXoHq3PGsxS2YTVCEAIEC4XzXduwHBafpxQFFxFVtZN/BAR20vbslHBYCj/AsVZZGXR0KfI3Z6MqihIRiPGkACGLXuPGnH1cdkcZK3ZhZAEMb3b0urB0bR60LtUWqNr+9NwTF/+aHCDl0Usl9jZ+NhnNL35ytL91dp923Hg16Ve7mrJYiK6W0tyNu/32MsyBllo9+T13o1xq5DLXr2DlePf9PiuSWb3nltU57gqlEznJBvXHEbVaCdst7uYPyuBrr0qN7hLt9zOg60v/eC1j4FLIW9vCplrdhHZvin9f3qWq7d86c4Ju8CRe20nX4cxOMD7hEGi8Q0Dyj2ePa+IZeNexlVix1Vsc1e5KLGTOmcd+87oOCAZDFwV/7nbQjv53heCRtf2Y+h/1auVy8DhLTCZDYTmHfPZyTwnPpHLLquNJHmfFxLEtSp/25wNkz7l2OZEXMU2ZKsDZ2EJ1qPHWTLqOQ78sYzfao3hv7EvsvSaF/it1lhS5673OVZJeo7PHnDKic/gSRpd24/AWhGewUSSwBhkof9vU7jsf3diiaqBkCQsUWF0eu1OOky5tdzPdyFpNLYf3d9/AHNEKMagACSLiXrDujF4/ltVLZrOCQrybTgd2p6Igvyz9Ie8QOiW23lwcm/mTFSnzKEZK6jdp12lyhPVpQXR3VuRsWwrQpKQzEYMgRau/Oe1CgUGpPy9WvPlL5fY2fPJLFrdf5XH8cBakYxa/ymOgmJcJXYCa0Wc1QXrsLtQFJWAwMqtE1jb7OKK/L3kbtuJJPvYO5MEN93TnaTkhZQUO7DbXBhNEpIkeGByP4ym8kV+qorCgV+WersHVZXiI9msvv1tr+jIZde/wjU7v9FsJWMMCdR0QYN7L+30cwaLmZHrPmHTE19ycMZyVJdM7JCudHv3foLrRtHmkbG0fngMisOJZDZV28jDFveMpPkdwyhOzcIcEVptgl103DRvGY3ZYsRuOyO3UhK0bu/fBsFlQVdu54EpNNhnyars9QnnNbb9eCF7PpnF4VmrMYUG0fL+q2h83eU+XzzWrOP802kC9txC916KrIAKjcf1r3AjUUdeEYpGJB2AM7/Y533msGDMYcE+z+dkF/Ptp+vYs/MoKlC/YQR3PNDjgofYAxzbnMj8AY8h2xwE+djvEkYD9Yf3IDI6hLc+u5oNqw6xLyGL6Jhg+l3ZjMgo38/mC8Xp8kqoLj3nUkBDUalOmX3T5tDljXu8zlnCQ6jdvyMZy7a6K5icfp+ssGT084zZ+U1p25iAqBr0/e5J+n73pKYMQggMlurjhvSFZDRc8L5xOhWjVbva1G8YzuEDuThPBGEJARaLkVHX+q+ZcVnR3ZLnQVS3Fj7PKS7tVXVZsOXk80+nCex441dytyaRuXIHa+6eyuq73vF5z/b//YL9WIGHZSDbHCT9uNjDRVUeag/oiDB6f0SEQaLukM4VGtNud/Hyk/NI2HEUWVZRZJXDB3J5Y8oisjO1K877k7X3vYeryOqlEE5iDAkkqG5Nen72COD+Yva7shn3PNyL0Td0qJBiA7f1FOajaLXqklEV78+L4nRReCDD55h9f3gKS0So5rmS1CwSv5tfIVnPF1VVcdkcVRIhp1N1CCF46pVBDB7VitAwC5YAI5261ufFqcOIrqX9Ob2Q6MrtPGh531Walegli4kGo3pUeNxdU//AevS4h5vKVWzj4B/Lyd2erHlPyqw1mvlPqqKQtmBTheSo2bEZ9YZ18wxJN0iYQoPo+PxtFRpzw6pD2Kxud+TpuJwyC/49P2v3XDiLreRu1472lCwmGo3rT68vJjF23w8E1fG/Fdnjo4leYfzG4ABq92+PQSN4wxAUQK2+vl3bQbUjMQRbtE+qkPh15Su3fV/NYXrsOH4OGcGvNUez/fVfNBW3zqWJ2WLkutsu45Mfr2Pa7zfyyLOXUye2airI6MrtPKg3tCtRneMwBJ56MUkmI5bIUFo9dE2Fxz00cxWKwzt0W3G4ODJvg+Y9hgDtfSthkDzkKy+X//48Xd68hxot6xNYJ5Kmtw7iqi1fnrP+oC+SE495+eQBZFkleZ93pKU/kYyGU8EuZ54zGWn31A00vWlgqXvOnlvAxsmf80fDG5nR9Ga2vvKjR1Rheak78DKGLHqH2gM6YokMJbxtI3pPe5zLf3/erfROC14RBglzaCDNbht81jG1Sq2dpLJzC/d8OosNkz7DevQ4qqLgyCtix+u/sumpaZUqh44O6Htu54WQJIYsmcru92eQ+M18FJuDBtf0oeOUWzwqtJcXow9lJBkNXu1GThJ39wh39KZGl+SG1/Qp1/zWzFxU1W0ZSAYDrSdeQ+uJFVfWp1O7Tihms6E0z+wkQkDtumF+mcMXBouZ2EGdSVsY7xWMYa4RTM2Op6qOOAqK+bfzfZRk5JYuNHa++Rup/65l5LpPzlrG7GzU6tWGYUu9o0dHbfiM9RM/In3JZhCCesO70+Pjh866d+nIL0L1kYQN7rJnFUVxyTgLSzCFBZWpbJoiy2x54Xuv6GFXiY29n/5Dxym3YK6hB4DoVB66cjtPjAFmOjxzMx2eudlvY8bdM4L4p7/yTjPAHdatReuHr+HIvA3uUPMiK5LZiJAken7xaJmrp+dsS2LV+LfIT0wF3EWY+37/lF/ziPoMbMqs6Tu8jpvMBoZe3cpv8/ii1xePMafnRBz5RbiKbBgCLUhGA1f8+ZJH94J9X83FmpXnYUHLNgf5iUdI+WcNja7t71e5wprWZfD8N90uPCHOGbHoLLIyu9sDZ3X5tX64/AsSRZbZ9spPJHwwE9nuxBhkof2zN9H28evOKpMtO99nRwnJbKRgfxpRXXzvUf9/x+VSSDmYi8EgUb9RhGYKysVEUaGdBf8kEL8uBbPFwIAhcfS7shkGQ+U5C3XlVomoqoo18zgGi8lnIABAy3tHkTpnPVlrd3soqm4fPEhwPe1kbIPFzNClU0lfsoW0xfFYIsNoetNAQspYZaLkaC7zL5/kUfg4b/chFlzxOGP2fOe3kmGhYQE88fKVfPzWCqwlToQQCAF3PtiDRk0997ls2XkgifOygs8kuF40YxN/5OAfy8nZnEhos1ia3jzQa47U2es0X9auIiup8zb4XbmdpKztgRK/mUdx2jGf5bOCG8TQ6oGryz3/pie+ZN+0OaULK4fDybaXfkSVFdo/daPP+8zhIT5dvorDRVDdCx8Je7GyZUMqX320FkVRUVWVwCATE5/sR/OW5c+lrA4UF9l5ftIcCvJtpaXrfv02nm2bjvDocwMqLdVEV26VRMbybayZ8J67Rp6qEt29FX1/eFp770oStHl0LBHtmmDLziOsWV2a3DiQsKZ1zzqHkCRiB3chdnD5e23tmzZHM1RddjjZ8/lsOr96R7nH9EWzFtG8//VYUg7m4nIpNGoS6ZE3dmxLIqvveJv8fUcAlYh2Tej73ZNEtG3sl/mNgRaajx9C8/FDfF5jqantIhVGw1lbrMh2B9asPAKiwy9ohY/Df63StOwBIto34arNX5S7j56joJh9X8z2yrdzldjY8cavtH1snE93rDHATLPxQ0j6YaFHeoxkNlF7QMcLVk/1Yif10HE+f28VDvspN73d5mLqS0t554vRhIVXTtshf7Jo9h4KT1Ns4K7JumdnJokJWbRoUzll3XTldoFQVZXc7cnYsvMwBgewZORzHsEIWWt2M7fXQ1yb/DPG0/bR8velsmDg4zgLraiKgqqo1O7f/rw6HZeF3C37NVusKHYnOZsT/T6fJAkvSw3cFewXDHgMZ+GpUlE5W/Yzr9+jjE38sdJ6d7W6/yrSF8V7dXaQTEaa3zHU63pVUdj68g/sfv9PUNxFiFpMGEnXt+/16EnmL8w1tPfihMG9wKlIe6HCAxlIZqPm50B2utjzySyy1icQEBNOi3tGENnes1lt9/cfwJ5T4O7JZjEhO5xE92hN/1+eK7cs/19Y+O8eDyVwEllWWbk0mZFjKz8/7HyJX59amud2Ona7ix1b0nTldjFTeDCDxSOfpTglC2E0uPOqzghgUBUFZ5GVQzNWlEbEqarKomFPU5KR61Fh/+iK7Wye8i3d3rnPa66ilEz2fTmH/H2pRHdvRdxdw7BElj8wI7xtY44s3ORVQUMyG4lo5x+LqSzs+fQf5DMr7qsqst1B4tfzaP+0b9eYP6l7ZWdaPzzGrazAHcmoqHSbep9mGbUtL31PwnszPRYw+6bNQbY56PXZo36Xr8W9o8hYts1b+ZpN54yw9EVwbBSyVoFlQLE52PLCd7iKbQiDxP5vF9D1nXs9XJ8Gi5kB01+g+Eg2+XtTCGlc55zehv/vZKQXeKXFADidMhlpBRp3VC2qqrJxzWH+W5CIzeqka68GXDG0hUcfRF8VhwxGqVKrEenKzc+oisKCgZMpSsn0uR9yEleRldwdp/LWsjfswXYs36t1jGx1kDhtrpdyy1i2lSVXTUFxyigOJ0fmb2THW78xct0n1Gher1xyt7xvFAkf/eWt3EzGCu3dVJSczYmaaRCy1cGxc1iQWUcLmff3bpL2HaNW7VCGjW5Ns5YV75vX+X93EXf3cFLnrEcyGWkwujdBtSO9ZbM7SPhgpleagFxiJ+n7hXR5426/RwrWG96dZrcPZf+381GcLoQkEJLEZa/cXmb3rctqJ/HruRz47T8kk5G4u4ZTb3h3jszb4Pk5MEgIlVJFqsoKstXOpslfuOtWnhGwFFwv2ufesI4nTeOiOJiUg3xG0QeLxUiT5tVvn/Krj9YSvzaltOVTWmo+yxcl8fK7IwgOcSu4K4bGkXrwuFdbKEkIevStvIWyrtz8zNGVO9wK6hyKDdwJvDXiPDsn+9oncRZZUVW1dDNWkWWW3/Q/j5W7bLUj2xysuXsqw1d8UC65g+tFM2ThW6y45fUTfbwEluga9P/pmTIHpfiD8DaNyFi+HfWMhHTJYiKije/C04eSc3j9uUU4nTKKrJJ6+Dg7tqQx/v7u9BnQ1Od95yK0cR1anyNn0Zp53HdfNLORokOZRHbwj3JzFllx5BURWCeSnh8/RMt7R55QvgYajulb5tJULpuDub0fIj/xSOneXc6W/cT0bkPs4C6kL96MZDEh2xwISWiWmRMGidQ564m7c5hfnu3/I0NGtWLF4v0eyk1IAnOAgV6XN6k0OVIOHefPn7ayf28WQcEWBo9swaARLZFOi248mJTDprWHPfYHnQ6Z47klLJ6zh9E3dACgZ7/G7NicxpaNqTgdMgajhBCCm+/qQnStyksH0ZVbGTgWv4+tL/9I7tb9hDSqTftnbqL+CO0KJMWp2WUeVzIbaXLjFaU/R3driWLXrlUZ2aGJR5RR7rZk7YRiVSVrXQKuEhvGII0OAWchpmcbrk36mYKkNFBVwprX84psUpwuUuesp/BgBhHtGlN34GXlDlw4G60njiZx2lxcZyo3k5EWE0b6vO/7LzZ4Joer7o7AP325kW69G5V21/YnquouHZZ3zIbDaEbCO8BDtjsJrn/+VoyjoJi1977H4VlrEJK7N2CXtyYQd+ewCgXaJH2/0EOxgdsyO7pyB/1/epaenz1C0aFMwprH8k/He7D6qKGKXn3kvKgZHcyz/xvCt5+uI+XQcQQQ1zqGuyb2JLCSXHgpB3N57ZmFbktLhZJiJ3/+so1DybncO+lUjuyOzWmaVf9dToV/Z+ykcbMoOnSJRZIE9z/el4NJOezYkobZbKRb74bUjK5Y6bqKoiu3c5D+31aWXPWce+WqqpSk57Ds+lfo8uY9monNNTs1Q5V9FeSVMARYUGWFkIYxDPjjxdLCtuCuqt/i3lEkfj3PQ3EZAi10e+8Bj7FURUH4ir3mLE0oz4EQwqdLsyA5nXn9HsVVVIJsd1eQD24Qw/AV7/stXD+0SV2unP0aK299A0d+MahgiQqj/69TfEbcORwyh5NztZ9HEhzYf4yWft7Ezswo4N1X/iPvuBVJEjgGjCH24B4a79hY+lcxBFpoNLZvhfZAz2TJqClkb9xT6i6UrXbWP/wx5rCgCqUlHPxjmWa0pWJzsvyGV+n4wm10fP5WHAXFWKLCsR717sqtumTqDe9e/oepAC6bg51v/87+b+Yj2x3UH9GDTq/cTnAF+xRWJxo2ieTld0dgtTqRJIHFUrmv5Rk/bfWqGuSwy2xal8LV1xeUFlcwmQ0YDBIujbq5sqzyydsrmDRlAK3bu70HjZvVrJRi6L7wy5JbCDFUCLFPCJEkhHha4/ztQohsIcS2E//u9se8FeXQnyv4q/Ud/Bg0jJmtxnPg9/98Xrt+4oful8BpykIusbP5ma81LaeIto2p3a+DV61AQ5CFQXPfYMSajxi9/SvGJHyvueLu9v4DdJ16L6FN6mAMCaRWn3YMWfQ2dS7v6HFdzU7NkcwaXwIhiOoShyn47CHEst1Byuy1JP+8mKLUsnWVnjvuNTJtAmuJE8XhwlVkpXB/Gmvu8W+/tjoDOnFdyu+M2vApo+I/Z9zBX6nVq43P6yVJ+GrLhqqofrfaFFnhzecXk3W0ELvNhbXEiawK0hu1IrNpS0xhQRgCzDQa25de0x4/7/lydyRzbPM+r/1QucTO5ue/rdCYWrUsT6LKCjvf/p2DM1Ywr9+jFJxI6j8dKcBMp1fuqJQQf1VRWHjlZHa+9RvFqVnYsvJI+mkx/3S6F2um9qLmYiQw0FTpig0gcY/2918Snue69mqIOEtyucMhM+OnrX6Xr6Kc929SCGEAPgUGAUeATUKIf1VVPbMK7nRVVSee73zny76v5rBh0melq9aCfUdYffdUrNl5tHlojMe1zsISCpK0e7YJg0TO1iTNdjJX/P0K8U9PI/HrechWB2Fx9ej+/gPEDtLOP1MVhaQfFpHw8V/YjxcRO7gLQ/97l5AGvq0NyWig349P89+4l1EcLlSXjGQxYQgw0/uryWf9HWSu3smSUc+hqiqqoqK6ZOLuGUH3Dx7UTLAsLrLz4SuL2R/bDVFHRpUkYpMTaLJ3C4rTXe+yIm7QsyEkifDWjcp0rdEo0b5zLNvj07wizyyBJs2Ug3OhKgq5Ow6AqhLRvolHaP3uHUcpKXacGfeDC0HugIHc+2AHgutH+8ViA8jbk4JkMKDlDyg6cLRCY8bdNZzMVTu9oi1P4iq2sWXKt5Rk5HjnPwqoN7jLBU9POUn6ki3k7jjgse+numScBcXseu9Pur41oVLkuFQJCjJjs3rnuApJEBJ6Kk0pulYI193Wid+/24Lso5fgkZS8CyZnefGH5dYNSFJV9YCqqg7gd6DywuvKgeKSiX/Ku6yVXGJn6/PfITu8w+B9rVRUWcFcIxhnkZX4Z77i99jr+DVmDGsmvIvjeCE9PpjIrYVzGW9bwNg931NvaDefcq2+eyrrH/6Y3G3JFB/OZP93C/in0wQKD539xVVvWHeu3vIlLe8bRd3BnWn35PWM2fM9EW0a+bzHWVjC4hHP4MgvxllQgqvIimxzsP/b+ST/vETzng9eX05SUh6KwYBsMqMYjKQ1acWRJq1Lr3H5KL1UWdx+X3fCIwOxBLjXa2azgYAAIw8/3b/cpYyOrtzB9PrXM6/fo8zrP4npda8jbVF86fnjOSWoPraaCgrsRHZo6jfFBu7SXL7KbAXVq5jl1PCaPtS/qudZa2QWHcnCVWT1PqFC3j5va+5CkfHfFk05FIeLtPkbK02OS5WBw1toejcMBol2nTxTOQaPbMVdE3tgMGh/p8Ijqk/SuT+UWyxw+if9yIljZzJWCLFDCPGnEEKzsZUQYoIQIl4IEZ+dXfbAjLJSnJKp2RYG3O6rwmRPK81gMdPg6t7eLwAhCKobRViL+szr+wgJH8zEmpGD/Vg++79fyL+X3YstJx8hxDkL7ObtOczB6cs8VtDuVWkJ21764ZzPVCOuPj0+eoghC97mspfv0AxVP51Df63ysjjAvVLf/f4Mr+MZafkcSspBPsMiUowmUpq3ByAo1n9WSkUJjwzi7c9Hc/v93Rk8qiXjbu3Eu9PG0KxF+fZkio9ks3jEM1gzcnEVWXEVWbFl57F0zAvk7z8CuPdI3Gna3tRvVLY6nuWhZuc4asTVR5zxWTIGWSrcekhIEv1/fo4mNw/0eY1X1/DTCI49u1LN3riXdQ99xOq73yF13gYP5ayqKsd3H+LYlkQUH331TscSVUOztdTJczq+KSywsXHNYbZtOuJVrPwkw0a3pkOXWMxmA2aLgYBAI8EhZh5/YSAmjY7zPRHHCQkAACAASURBVPs3IaJmkNfC32IxMmJM9Uk6rywH72zgN1VV7UKIe4EfgCvOvEhV1WnANIAuXbqcd6dDVVXJ3ZaEbHNQs3Mc5ohQn18mxenSrH7R6/NHyUs4TNHhTHch2QAThgALA/95ldR/11KQnO6R+Kq6ZBz5xez59B86vXDuF0/Gf1vRek+qssKRBf5fldqy832+tGxZ+V7HsjKKMBgl0PhiOM0WpMAAen7yUKXVizsbJpOBXv2b0Kt/xUOo9345R7P7uHKiQkePDyfSsEkkzVpEs39PlkclBrPZwLW3dqrw3L4QQjB44Vssv+FVstbuRjIbUWWFDlNuodn4iiVsAxQdOsqB35f5vsBHeoMxOIC2j4/zeVv809NI+GSWu9KJonLwjxXU6tOWK//9H7nbk1k27uUTaS8CYTTSe9pjNBqrXRAcoMmNV7D1Re+FnjE4oDRNI3fnAY7M24DBbKLh2L5nden/f2H2n7uYNX07RqOEu/CnysQn+3tZYwaDxMQn+5OWmsf+vdmEhlpo3zlWU7GBe4/76VcH8d5ryziWVeQOMnEqXDmyBf0HNdO8pyrwh3JLA063xOqdOFaKqqqnN5b6GnjbD/OelexNe/lv7Es48opKVxg9P3+U2MFdSFu4yWMfQTIZqXN5BwKiw73GsUSGMXr7V6V+/5CGtWhwVU8MFjMJH87UdJfINgdp8zeUSbmZwoI9+nidjjAYmD/gMXK3JxMUG0X7Z26iVp+2FKdmU6Nl/QpFKMb0aoNkNnpZsMIgUfvy9l7X161fQzM6CiBQdTJsydvE9PQd7HGxkb83RTOJXHXK5J/W0XzScwOY/sMWVi5JwuGUqVuvBrfc3dXvUZknCYiqwdAlUylJP4YtO5+wuHoeZdsqwv7vFlQolL/dUzdQb5h2lGTO1v0kfDzLo+i0q8hK5qqd7Js2h83Pfu1RnBtg5fg3CWlcm6jLtLtPBMdG0/eHp1g1/i2EQXJX+1FV4iaMoP7VvVhz33sk/7TEncxukNj83Dfu6ikPji73s10q7Nyazr8zduByKh7lvT56cznvfnmNZs3K2PrhxNb3fgdqEV0rlNc/GsWRw3kUFtho2CSS4BDPz2NuTgnHc0qIqRWCoqoEh1hOKNrKwR/KbRPQXAjRGLdSuwG46fQLhBB1VFXNOPHjVcAeP8zrE/vxQhZe+QTOQs8v0Zp73mXgrFexHs0lL+Gwu4mYqhIWV49+Pz/rczxfBYkDYiKQTN6K4uS5slBvRHefBXCtR3OxZrjXBY68Ilbe9oY7xyk4AMXupOmtg+j56SPlql0Y07M1Ud1akr0+4dQGvRBuF5eGMo6uFULbjnXYtTXd00qxGLhpQn9ielaflZo/iO7WkiPz1nslLUsWE1HdTrXkMVuM3DqhG7fc0xVFUSutlUdQ3Si/RSiWpB3TLJZ9NowhgWdtgXRw+jLNEl6uYhu73puhaRXLNge73p3B5WepQdn42v7UvbIzqf+uxWW1Ezu4C6GN63D479Uc+GVpqTJVT3hmNj05jbpXdqZGC80dkEueBf8meCRbn0RVYe2Kgwy9urXGXeVDCKHphi8ucvDZ1JXs3XUUELhcCpIkMFsMDB/dhlHj2lVKS5/z/kaqquoCJgILcSutP/6PvfOOjqJc4/AzZUt6CCGFXkMJndARAekgiIpdsV/12vV6bdgLdkWxK14VRRQQVIo0pfceICGBJCQhvW6yfeb+sRBZdjYJySZEzHOO5+BO+3YzM+/3veX3qqoaLwjCC4IgTDm12/2CIMQLgrAPuB+4ubbXrYzkeatRNGrNnGYbCZ/8yuStc5iw7m2GfPgA49e8xZSdH9doFdRpxlgEjZnIme6Sqji5ejeit7Tss4NjpzIb7cVlOC02kuetZvczc89pzIIgMHbZq3R/5CqMEaHIAUZaThzApM0fuKmlnMk9j1zEkIvbo9NJ6PQSAYF6rrm5H8MvubAMG0CnW8e70uTPcrNKBh1d75nisb8gCPXao8qXRI/sjRx4bgkAgiDg8FbQjStpSzOoi8vAafZ8U1S3VbE3DKGBdLxpLF3+dWmFEsuRj5dqZnwqdgdJ366q8pwXKkUFGolAuBRFvG3zFbNn/cGRg9k4HGqF10dRVCxmB78uOsjP8/fV6fVP45OYm6qqy4BlZ332zBn/fgJ4whfXqg6lSRnaqyFVpTQpA0EQCI/rXOvmiUHtmzP0s0fYdMdbCJLkMj6KQvdHptN8dL9Kj83ZeoiNt71JydH0itnmueIst3J4zs/0ffGWc1KBlwx6+r5wC31fqF4bG71B5tZ7B3PDHf0pL7cTHGxwk+WpKXa7k+JCM8EhRvTnob5HC2PTECZv/oCNt71B7o4jADTt3ZGhnz+Kf/RfJQVFhWY2rTtGUWE5MV0j6DOgVbVdLg6HQkpSPoIIbTs0PW/Gse30i9n74jeYUrP/WsGdnlF7ibcpdgdRF3u6r0/TZtpFJHzyq4fBkfwNNB/dl7Qlmz1c+YIsEd6/yzmNvfRYJgffWkD2poOa209PAv+pdO0RxcmMEg/NSqNRJqZb3fWJy8osITkxz2sow2Z1smLJYS6d3sNrTM9XNIw3io9p2q8zcqCf9kM04NweoqrocN1oWk4YyIlft6LY7LQY35+AFs1QHE6cVptmMXVJciYrx/zHa43RuaBY7ThMZjdhXlVVcZRbkAx6n7Zb0RtknxghRVH5ef4+Viw97FJSUWH46I5ce2tcvfrkvRHSuRWTNs7GXlqOqqrog91lgw7syWT2rD9QFRW7XWH9qiTCwgN4etb4CvFYb+zdmc4n72w6VY+nIssSdz8yjO696189XzLombzlA3Y99SXH569FcSq0unQQ3R+azu5nviLjrIQmOcBIr6dvqNTLETEkljaXDSP1540V97ccYCSkcysGvvtvTq7Zg9NsdeuSIRl09Hj0qmqPO3/PUZZd/BBOqw1Vw80JLvepN4m8fwITL+vGpnXJmJ1KxUJalkXCIwLpFaeVzO4b8nJMyLKoKdN1JkUF5jrXmRRqKtNU18TFxak7d+6sekcNHBYbCzvdiDmrwO0hkgOMTN3zKcEd6+6Pay8tZ+v973Ns/jpUp0JQ+2gGzb7PLV63+Z53Sfx8mfcVmyAgSCIIgoeA8NkYwkO4NuunCn3HE79uYduDczCl5SDKEh1uGM2Ad+7RNLL2MjMnft2KrchE9Ije9RafWPT9Ppb/HO8WE9AbXJmOt9zTsF9INpuT+2b8iMXsHleSZZGLLunAzXd7H//JjGKeeeg3j5RsvUHildlT6lVUtjqUpmZx4I0fyP5zP/4twun+8PRqNcJVVZW0pZs5+sUyHOVW2l87ivbXj0Y26jGlZrPxtjfI3nAAgJAurRjyycNEDKp+DOiXQf8mb/sRr9slfwPNBnRl/Oo3fKp7+ncjK7OE+V/t4uDek8iyyJCL2zH9xj74+ddNE11VVVm2OJ4FX1euUqLTS8z5ejoGY820MwVB2KWqapU34gVp3MDV9HLTnW+TuWoXAE16tGPIRw/RzMcrtzNRVZVfh9xLwd5kt3R7yc/AuJWvETmsBwC/DLyHvB0JmucQ9TLRI/vQ66nr2fn4ZxTsS0ZVVBS7w8MYyv5G4t64k653u2rmM9fsZvWUp93iGpJRT7NBXZmw9m23YzPX7mHNZTMRBMEVn1RV2l01gmFf/KdOXwgOu5N7blzgoWUHrlT+9+Ze4ZF11ZDYuzOdj97a6GHcwNXH6pPvr/F67DefbWft8kQPFRVZFhk/tSvTb+zr8/E2VOwmM4rdgaFJ0Dkd57DY+DZokkd/RAAEgcA2kcQ+eAWd77oUSV9/vcMagW8+28H61Uc1E1lOo9dLDB3ZvtJJYFVU17hdkG5JcKUPj/3tVRwWG6rDie4cA+c1IXfrIYoOpnhqAJqt7J45lwnrXAYmtGsb8ncf9XhAJT8DfV+6le4PXQnAxA3vkbf9CPl7kvBr0ZTsP/eT8MkvKHYnuiA/+jx/M13u+ivJYddTn3sE7J0Wm+sce5No2tuVAGIvLWfN1Kc93KIpP60nYnBsper7taWkxIrqrX5KJ5KbbWrQxq0yd8vZ8Y2zycrQbkzpcCjnpTGl6UQOx+evxVpkosXofkSN6H3O9YrlmXmkL9+OIIm0mjy42p3Sa/o8iqc8GlrIAUZGzJ9ZpxPYRrQpLCjnz98TNTtwA+h0rgnzgGFtuOH2/vUypgvWuJ1GrkQg1tcU7E32KpNUsP9Yxb9jH76S4z/96ZH0IuokOp1RlCsIAs0GdqXZQFcKeptLhxA36w7speXoQwI8VlhF8anaAxMECs4wbqmLN2q+IBxlFg7NXlSnxi0o2IC3ZgYOu5PwZg3LNXc2XbtHaRoxQYDufSrvpdapSzMS4rM9XgB6vUSnWjRVLSm2sPKXw+zdkU5gkIHREzsTN7h1pYYqed5qNt35FqpTRbHZOTx7MRGDYxnz2ytVquqcZt+s79j3wjcVLvQt97zHwPfvo/NtE2v8XapC1Mm0nDCA9GXbPCaHukA/wuO8lyk0UnckHclFkkVN4yZJAk++Mo6IyCACg+tv4vrPdUjXAQGtI7wmcAScoQEY1rMDI+fPxBAeghzohxxgJLBdNOPXvFWljJUoSxiaBGm6Dv2ivQgEi4Jbw1FrQalXGTJrYWml168tOp3EqPEx6A3uv5NOLxE3uE293vw1ITDYwOXX93IbvySL+PnruObmyjNkR42PQaeX3OYVguCKuQ0fXbOyiqJCM08/8AsrlhwiPbWIIwez+ey9zXzzqXd1G3N2AZvueAun2VZRsO4os5C96SCH3l9cretmrd/P/pe+xWmx4SizVGiUbrv/A4oOe5lk+YghHz2IX3TTijIGyc+AHOjHqIXP/aNjbOeTyhKpjH462ncKr/dn+4JfudUnLcb1RxccgL3M4pZKLQcY6fnk9W77tpo8mGtO/kjRwRREvUxIl8pn2tWh5+PXsu3+D9xa8QiiiDE8lKiLe1V8Fjm8h2u2fRaCJNJ8VN3Hfa66qS8Ou8Kfq5OQJBGnw0n/Ia255Z7Bmvvv3ZHOgm/2kJ1ZQkgTPyZfHsvI8THnTfJr4mWxtGkXxspfDlOYX063HlGMm9qNsKb+lR4XHOrHzNcmMPfDrSQdcWmndo6N5JZ7BtXYFbt0wX5MpVaczr/uN6vVwfo1yYyd3JWoFp6TpdRFGzVVcZxmK7ufnUt4/85EXeQ93R/gyEdLNOvdFLuDxC+XM+CNu2rwbaqHf/Nwrkj8mpQFf5C3M4Gg9tF0uHGMz3oKNnLudImNxGCQPboL6PQSI8Z1Oi9jajRuPkSUJSase5vVU56m7EQOgiSh2B30fPxa2l890nN/SSKsVwefXb/TLeMxpWZx8I0FiAYdqt1BUIfmXLLkJbcZbXjfGJpf0pfMNbv/co2KAnKAkd7P1kyI91yQJJEb7xzAlTf0Ji+njCZN/d1aa5zJto0pfD57c0WGYX5uGfO/2k1+XjnT60DHsbrE9oomtlflbkgtmrcM4alXxlV8n9r2mtu97YSbYfsLlf17MjSNm8NsRfUSH3SWWfl9wuMM/fRhOlw32ut1zdmFmsXaqsOJJduzsamvkY16Ot40lo431VxbsxHfIUoijzxzCa8/uxqHw4nTqSIIENM1gmnX9Kr6BHXABZsteT5RVZWi+BSs+SWE9emIPjgAxenk0HuLOPT+YmyFpUQMiSXu1TsqjJut2ET8uws5Nn8dkk6m020T6HL3lBplfNmKTRTsTcbYLMRrTzTF7iD+3YUc+WgJ9pJyoi/pS9+XbvXahft8oKoqD92+iML8co9tOr3E7LlX4h9QfzHV842j3ELO5ngEWSJyaHdEncx/7lpMTpbJY1+9QeL62/ozYqznrLkwPoVfBtyjrRZy+vjQQK7NXug1/nbgzR/Y8+xXHjJlsr+BIZ88TIfrvRtGX1F8NJ3tD80hc9VuBFmk7RXDGfD2PdVOavm7YLU62L8rA4vZQZfukXVWMpKeVsQPX+0iOTGPkCZ+TJneg0EXta3wkJQUWzielE9wiJG2HcI0PSd2u5N9uzIoLjTTISa8Rr0Uq+IfXwrQ0PjjupdIW7r5r5XSKT3HSRtnE9Q+miX97qI8PdelpI6rVie8X2fGr33znNRHLiTKy2zce9OPmo0R/fx1PDxzFDFd605toSGR9O0qttz9rsudrIIgi4yYP5M9JUaW/LDfo3ZOp5d45/PLCQrWbiC78Y43Ofb9Wq+6pnKQH5PWv+fVs2AtKmV+1HQPkWlBErni6DcEtY2qwbesPuUn81kceyu24rKKFaSgkwhoGcHlh75EMlwYk55D+0/y3qt/AK6vqThVho/uwI13DvCpWz4pIZeXn1jpls0rCDB6Uheuvy2O+XN3sXp5AjqdhKKohDTx49FnRhEZXf+trqpr3Bqjr/VAccIJ0pZscn+RqCqOcis7n/iMhM9+ozwjr8KwgUtaK3/PUTJW7DgPI65/nE6F9auTeOG/y3nu0WWsWHIIFRC9NEV0OhRCQn3X+Tsvx0R6WpHXDsPnk7xdiWy+6x0cZRbsJeXYS8uxFZpYO+0ZhvVrRrtOTSuatMqyiE4vceu/B3k1bABDP32EQbPv9ZpWrzqUSnUnC/YkIeg0Xh+CwKH3Fp7bF6wB8e8uxFFudXONqnYnltwiUn5aX+fXrw/Ky2y8+8ofWMwOLGYHVosDu93JhrXH2PzncZ9e6/1Zf3qUqagqrP7tCMsWH2LtykQcdgVzuR2rxUFuVimzZq7SLG1pKDTG3OqB7E0HEQSNF4GqkrM5HnupWdNF5DCZOfHL5gteRkhRVN55aS0Jh3KxWV0B6Yy0IjasTWbgsDZs25CK/QyZJVEUaNEm1CezxqzMEj54fT1ZmSWIooBOJzHjrgEMGNq21ueujMTDOaxccpi8XBOdYyMZP6UrYeEBmvvGv7fQbeJzGsWpcPzrlTz+4o3E7zvJoX0nCQgyMHh4O5o20z7XaQRBIObWiRybv46sdXvd0+oFgaAO0QR38C4JdvLPfZqrPtXhJH3FDga+U+nla03WH3s1WxM5TGayNuyvF7doXbNjc6pmr0eb1cHKpYcZOqLmfQvPxG53UlSoLaasqrBs8UGPwmxVdRnfwweyahR7rg8ajVs9YGgarJmdCK7Yhj5YO8tOkCV0IXVf92XJK+bwB4tJX7YdY2Qo3e67vFoyS77iwJ5MEg//ZdjAJXOVk1XK8NEdKSowk3goB1ESUFVo2iyAB54YUevr2mxOXnpiBaYSa8UCwGpx8PE7G9m97QS9+7ek36DWPhd4Xbcyke++3OlyJapwIrWI9auTeOa1CTRv5RkvMh0/qSlkrFjtmFKyEEWBHn2aezShrA4XzX2M34bej7WwFEepGTnQD1VRKM/M55vASUQM607/1+8krKe7e9LQJAjJoNc0uoawc1MdqQkBrSPJ25nokdQiGnQXTKNSU6kVuxeJPlOp93jpuVJe5r3LA4C5XLtsSFVUzXh4Q6HRuNUDLScMQNCof5P8DXS9bxohMS3JWr/fQzFE1El1ng1WnpnHkr7/wl5SXvGiyvpjH7EPX0nf56vXNaC27N52QlOOy2Z1smtrGk++PI6ME0WcSCkkPCKQDjHhPok37NySis3q9Ej6czpUtqxPYc/2dBb8bw/PvD6e0LDK0/yri9ls57svdrrFyJwOBbNT4dvPt/PY82M8jom8qCd5OxM9lG/kACORQ7vXajwBLZpx5dFvSFu6maL4FI4vXE/J0XRsBa56x8zfd/Lb5oNcunWOW3JS+2tGsuvJzz3OJwcY6XznZPa/Pp9j369FlCVibptIzG0Tql0cXh1iH7qS9OXbPFaPgiTS6eZxPrvO+aRT1wh0soTV6f5siKJA1x6+i2kGBRmQdaJbU9MzadU2hJRkzwxYVYU27cN8Ng5f0xhzqwckvY6xK2ahbxKELsgfOcCI5Ken9aVDiH3wClpNHkyHm8Yi+RsQZAlRLyMZ9fR98VaaxLat07HtfmYu1oJStxm4o8zCwTcWUJaeW6fXPo3BIHkL/VTEklq0CmXQRe3o2LmZzwLp2SdLNY3qaSwWB4UF5cz9cKtPrgeQeCgHSavzgQqHD2SjleDV7b5prq7bZ3xvQZbQhwbS/tpRtR6TqJNpe8VwWk4ciCn5JIrF3Yg6yq3sfvYrt8/8IsMY/u1TpwqoXfezZNTT/tpRHHh9Pnuf/x+F+5LJ35XIjkc/4vcJj2v2WKwpkUNiGfDW3Uh+BnTB/qf+C+CShc/7rJnr+aZTl2a0jwlHd0a5iCCAwSAz9aoePruOKIlMv6G35jM4eHhbrr21v0fJik4v0Tk2QrNZaUOhceVWTzTr34VrTv5I+vLtWPOKiRjandAurSu2D5nzAF3vnsKJX7Yg6mXaXDG8zjPOANKWbtbsTiBIIhkrdxBTh1JKpxk6sgPrVh71yPgzGGVGjKm7AtDmLUMwGmUslRg4RVE5sCcTu91ZLfdkbnYpSQl5BIcY6do90qPvnU4neuvl6TV5xj+6KZO3fMCW+2aTtW4vCAKtpwxm0Oz7kP19l1STszle2wApaoWK/5m0nTaM6IwFnFi6GbvJTIuxcaSv3EHyd2vcSgQc5VZytx8mY8UOn8aPu/zrUjpcdwlZf+5D1OuIurjnBZMlCa646CPPjOLXhQf5Y+VRrFYHsb2imX5DHyKifOv6HT81FoNB5sd5eykrtaE3SEyYFstlV/VEFAUefGok8z7fQUZ6MQa9zMVjOzZ4oe9G41aPSHodbaYO9bq9Sfd2NOnerh5HhHdXkSAgGepHVb1N+zAmTItl2eJ4nA7F1UNNLxM3qDV9B1avDY/V6mDn5jTy88po0y6MHn2iq2yo2m9gK76fuwubzVlp1pcrBVuBSoyb4lT4/P0tbN+UiiS7jJTRqOM/z4+mZevQiv1iukUiaqiDSJJA/8FtvK5KQzq3Yvzvb7i0SwWhTtRZjBGhiHrZw/0JYGwWqnHEX92xT5N6+5uaiSYOk4W0JZt8nhylC/Kn1WRtZZsLAZ1OYto1veqlEHrk+M6MGBeDw6Egy6LbPRbbK5pX3p+C4lQQxLq5/3xNo3H7h9PxprEcenchzrNeaKrTSct6fGlcfm0vBgxtw7aNKTjtCn0Htap2bC3teAGzZq7C4VCwWR0YDDJh4QE89eo4r8onALJOYuas8Xzy7iaSjuR4UfqAlm1CMRh1JB7OYfH8fWSkFhERFcTUq3tWJHGsWHqYHVtcWZ32Uz+lxezg9WdW8e4XV1QYWlkWue+/w3nn5XWoiitTzWCUCQ4xct1tVSfxVEc7scxkw2K206Spv6Yh9UbrKUPYfPe7Hp/LAUZiH7yiWueQg7TLBwRJROdlWyMNB0EQKvVQVDVhbEg0FnFfQDitNpLnreHYd2uQDDo63TKeNpdfVOkL0W4ys+ziByk5moHDZEbUywiSxLAvHqX9NbWP59Q1qqryyB2LyM9zz9qSZJH+g1tz9yMXVes8plIrm9Yl89O8vRVZjKdLAx57YTSlxRY+fHODm+tUb5C4/vb+jBjTiQdvW6iZOWb0k7n3sYs9MhmLi8xsXJtMfm4ZnbpEEDek9lmZpSUWPntvM/H7TiKKAkY/HdfdFsfg4dX3BuRsPcSqSU+iOp2oiorqcNLxlvEM/uD+ak00UpdsYv0Nr3gkR0l+BiZtml3RmaKRRmrKP76f2z8Np9XGsuEPUnQoteLFkrV+P8d/+pMR38/0+mLSBfpx6bYPOfHLFjLX7sYvogkdbhxTL/E+X5CSXIDJ5JnK7HQo7NyShuJUqjXbDAwyMG5KN9rHhPPbonhyTpbSvlM4k66IJap5MA/fscgjJmizOpk/dxfDRrSnzKSdmq2qUFJk8fg8JNSPSZfXLtPR/Toqrz69iqyM4ooVqM3m5MsPthAYZKh2mUDEoG5cc/JHMlfvxnwyn+BOLQiP61xtN1TrKUNod/VIjs1fi9NiRxAFRFmi5xPXNRo2L1gtdlTVpZ7fiO9oNG4XCEn/+52i+FS3jgCOMgvpv20j6899RI/o7fVYUZZoM20YbaYNq4+h+hSL2e7V9eZ0qjgVFfEcFkSdukTw4JPukl5FhWZKij0NFLiMSsaJYtp1aErCoRyP7YpTpUPnus/eS4jPIT/H5OFatdmcLP5+3znVwAmCQPqyrRyduwJBklCdCl3umULcrDuqlIITBIFhnz9Kl7unkLZ0M6Jept2VFxPSuXqx038SWZklfPHBFpISXFnJbduHcdu9g2nZpuFmIJ6Nqqrs353JmmUJmEqt9O7fkksmdK60BU590WjcGgA5W+LZ+fhn5O86ij4siNiHriT2gcsBSPtlC8fmrQag/fWjaX3pYE03Y/J3a9wM22kc5VZSFq6v1Lj9nWnXsalXyaxWbUN9UoCtqiqKl3ic06niH6Djqhl9ee2ZVW5KDnq9RO/+LYlqXvf6exknirwmxVTV5buo0My+nekIokDvfi04+MTHJH29yi3j8chHSxFEkf6v3Vmt8YT3iyG8X2PjUG+Umay88NhyystsFdmzx47m89ITK5n1wRSf1VWeK9s3pbJw3l5yc0w0CfNj6tU9uWhUB68r9wVf72b1soSK+z4tpZC1KxJ54e1JBIf4LpO3JjQat/NM9qaDrBz3WEWGmaPcwu6ZX1J44BjWglJOrt2Nw+QyWunLt9NibBwjf3zWw8B5z3qsZNsFgNFPx/Qb+vDjt3sqHjBBcNXh3PSvAbU+f/y+v4Rrz0YQBZq3DKFZZBDNIoP47/NjmP+/XRxPysc/QM+YiZ2ZdIXvXI+VEdU82OsKtjIV+eU/x7Nw3t5TxwrMs25k0IqVcJa0lbPcypE5P9Pn+Zvrtbt9VWRvPMCup76gYN8x/KLD6Pnfa+k4Y2yDz+ZbvzoJu81TQMBud7J6eSJXXl/7yaiqqqQeKyAvp4yWbUKrnGT9seoo8z7fUfEc5eWU8c2n2ykptjBZw4WeiQyhbQAAIABJREFUfbKUVb8lYD/DXW+3OSkttvDLTwe4/rb+tf4OteHCfev9Tdjx2CceqdPOcivH5q1B0Elu2xxlFjJ+30n6sm0e6c8xt04gd+shz0D+qcLaC5mxl7qacv66MJ78HBPtYsKZOr1HrQtMLWY77736h2aht6wTCQoycN9/h1d81rFLM55+dXytrnk2Kcn5HNx7EoNBpv+Q1l5n9F17RBHcxA9btsltBac3SEy7RrvxaHJiLou+34f9DGWKgJISHIqXF4MgYMkudOvqfj7JXL2L1VNnVuiy2kvK2HrvbEqOptPv5dvO8+gqJzkxzyOGC+CwKxxLqL14QnGRmTefX0N2ZimiKOBwKnTrEcW9jw1Hb/D86ypOhR+/3uOhIWmzOln6wwHGTuricdz+3Rma2pcOh8KOzWmNxu2fTv6uRM3PVVVF0aoXKrOQPG+Nh3Fre9XFHJu/lpPr9rhWeqKAbNTT+a5Lada/S52MvSHRs28LevZt4dNz7tmejrf5f0CgnllzppKcmEdGWjGdYyPw8/fdikZRVD55ZyO7t5/AYVeQZJEfvt7NLXcPYuhIT8FcURR48uWxzHljPSlJBUiyqxbp6hl96TNAO961dnmi26wbwOIXgKBou3lVRcUYoV3vdj7Y9uAcD8FxR7mF+Hd+ovujV2FoUvcalzUlqkWIpuSVKAlEa+iLniuzZ/1JelqRmzv90IEsvvtyJzff7VlrWFRodtN2PRNBFMg6WUrrsyaLsiyipQd/etv5ptG4VRNVVcnZcgjTsUxCu7fzWeaXPiQAS27xuR2k8cYVJYlLFr9A5prdpPz4J6JBR8cbxtBsYFefjPOfSHmZzWvtm83q5KHbF6EqKgiu2eo1M/oyepJvJhKb1h1jz/b0ipm0csoIzf1oK117RhHW1HMF1yTMn6dfHU9BfjnlJitRzYORK4k5FhdbPHU1dXqyW7Yn+uRxBPtfLzvJ30CXuy51yYB5wXQih4Nv/EDm6l0YI5oQ++AVtJ46tE5chIrdQdHhNM1tokFH3s4EWoypG/Fvp9WG02JDFxxQ4+82alwnfl96GAfuxk2WRcZMrN09lJNVSuqxAo84sd3mZOO6Y9xwe3+P+8IvQI/ipSzM6XASHOz5d+87sBXzPvcs19LpJS66RLsPYH3SaNyqQXlWASvHPIop1ZUNpyoKTft2Yuxvr6ILql3gt8u/p7L/le9QbO6zJl2wP06LzcNlKQcYvbbzEESRFmPi6uyh/qewe/sJlv98iLwcE04tOSrB1T3g7ASOH77eTau2TegcW3u33ZrlCVi1ZtKqyvZNKYyf0s3rsWFN/TWN39n06teChPhsD1dUWv9hdDZHUb52G6JOQnE4ibl9EnGzvCeTlCRn8kv/u7GXWVDtDoqPnCB/VyJd75tG3Cu3VzmW0zjMVlIXbaA0OZPQbm1oPXWoZsxYkCUko86jEzi4BAjqohu3raSMLfe85+oXpyr4t2jGoNn31kghJSw8gIeeHslHb21wub0FkGWJOx8cSlSL2iUgFReZkWXRY1UOrtW3xeIg8Gzj5qcjpmsEh/ZneRzTvFWIpjs8JNSPG+7sz7ef7UBxKjidKgajTPNWIUyY6v3+rC8ajVs1WDf9eYoT0t00GPN2JLDprncYMe+pWp07sE0UisPTDdRsYFdko56MVTsrEkrkACMtxg+g5YTaJ0o0os3P8/exbPEhbcOCK1lFkkQQ8DBuNquT5UsO+cS4mc2eEljgWiFazN61MM+Fi0Z1YMWSQxQVmHGcugdlWSS0WSBT3nkarFbKM/IIaBWBrpLGpQC7nvgMe0m5Sx7s9FjLLBx6dyHd7r2sWmLGxYknWHbRgzjMVhwmM3KQH4ZHP2bSptkEtGjmtq8gCHScMY6kr1a6t90RBPyjmxLm45o6VVVZOfYxCvYmV/SRM6Vkse6aFxnz6ys1ykbu2iOKd7+8krTjBS6F/XZNfKIA0qJVaMXf82wCgwxe0/S9ta/JzTZhszo0Y3UjxnSiS2wkm9YlU1pipWffFvSKa+F6Rs4zjcatCkyp2eTvSvQQF1asdlIXbcBRbqmVeO2eZ+aCRowja+0eLk/4H4X7j5H83RoAOlw/2tU+pxoSTH8XCvLL+WNlIulpRbRp14SgECOb1h2jrMxG7/4tmTi1G8Gh9SPbVFpi4deF8W6NUU+jN0gY/XTE9oxClAQ2rdPuhJyfW+aTsfQZ0JJVvxzxeEnp9BLdfdQc0uin4/k3J7H4h31s35SKIAgMvqgtU67q6XqRGWT0wZU3PT1Nxu873QzbaQRZInPNHjre6NnK52zWXfk8lrziih5tjlIzznIrG2a8xvjVb3rsP+DNuyg6nEr+joRTXdsldEF+jP71FZ+7QnO3HqIoPsWjQaqz3MrumXOZtOG9Gp1XFAXadmjqiyFW4B+gZ+zkLqz67Yh7aYpB4qoZfTV/m+IiM7nZJs3zlZfZuf+Wn3jwqZF00Zi4RTUP5orr+/juC/iIRuNWBZbcIkS9rNmUEcBeWo69tJzEL5dTdCiV8LjOdJwxDkNo1U1GFbuDsvQ8zW2iUU/x4TRaTR58wQrDJh3J5fXnVuN0KjjsCru3p7tiWKfIzTrCprXHePGdSYSG+ZOfW4a53OYKxtdBwDoh3tWORsu4KU6V97+aDsC2jSns3OLZg06SRbp0r3zVdjKjmCU/HODo4RxCw/yZOK0b/Qa19thv4mWxbF53jDKTrcLA6Q0Ssb2ifVoUHhhs4MY7BnDjHbXzBkgGPXY8Z/6CICD7e4/Tnab0WCYlyZkezUdVp0L2xgNYi0wez5Tsb2TiunfI25lA/p4kAlqG03xMHKJG78TaUrD/mGY7IoCieO2JjhY2q4OTGSUEBhmq7JZeG6bf2IfQMD9+WxRPcZGFyKhArryhD/2HtNHcvyoNUnO5nbdfXMs7n19OQGDVf8+GQKNxq4LQbm1QvHTDNTQJpPTYSVaO+y+qw4nTYiN18Ub2vvgNkze/T0hM5aoMgiyhDwnAVuQ5Y1LsDgIaSMp1XaCqKh+9vcHNQKhnufkcDoUyk5UFX+8mM72E9LQiJFFAlESuvy2OYaN8G7R29Y7TfoGd2VOr38BWLJy3l7ycsr8KyAVX0XZlsbC04wW89MRK7Ke6EOTllvHJO5uYOK2Qy85SfQ8OMfLSu5NZtjieXdtOoDfIjBofw4ixnRpkDVfHW8ZxePZij0mgqijVcqPbTWav3eoFUXRlRXqZMIbHdSY8rvO5D/ocCGob5XV8/me5TL2x7Od4fp6/H0EQcDoU2nUM49+PXUxoE997JgRBYOzkroydXL2EsqBgI81bhZB23LMp6WlUVWXrhhQumVC3v7WvuHD8W3WE7G+k11M3eLgeJX8DcW/8iz+ufQmHyVzxUDvLrdgKTWy4+fUqzy0IAt0euhLprJmtoJMJ69nBrd/bhUZ2ZqlXSaszcTpVNv+ZQsqxAuw2JxaLg/IyG//7ZBvx+076dExdu0dqxgpkneiWfi/rJGa+Np5BF7VFp5MQRYHuvaJ55vUJlc7G532x0yMRxWp18OvCeEwlnmUfwaF+XHNLHG98PI2X37uUSyZ0bhCxDC16z7yRJj3bI5+KzUl+BiR/AyN/fLZabvvQrm28rrj8oprgF3XuHZ9VVSVn6yGOL/iD4sQT53z8mUSP7ouhSZBHSEAOMNLrqeurPH7zn8dY/P0+rBYHFrMdu91JUkIerz2zyuuKsD4xm+0eiUVnY7M6KS4019OIak/jyq0a9Hz8WvybN2Xfy99Snp5HcMcW9H35VoI7NMearyFtpKrk70rUdKWcTa8nr8OSXUDiF8uRjHoUm4Pwfp0YteiFOvo2DQPVywrJ695nhXNsVidLFuwn1kfxJ3AZrQeeGMFbL65FVVVsVlc7mqjmwUy/wT2mEBRs5M4Hh3Lng977851Noob2JLjcmYmHc6rdu64hogvwY/Lm98lctYusDQfwiwil/bWjvPaBOxtRJzNozv1suuOtvzKEBQHJT8+Qjx8+59VqWXouK8f+h7L0PARRQLE5aD66LyN/fLZGDU1FSWLCH++w5rKZlCRlIMoyit1Br6dvqFb3jCU/HPAwHoqikp9bxtHDucR0i/ByZP2wZP4+8nK1Y26nMRplOsRUb5XaEGg0btVAEAQ6zRhHpxnj3D4v2J+MZm92QHE4WNztZpoN7ErvZ2d4rYsTJYnBHzxAn+dupuhQKv4twgnuUH2R278rUc2DCQwyUGDVztA6jSQJXjUTs0+W+nxcnWMjeefzK9i+KYXiIgsdYsKJ7RV9Tn3RvKHTS5pqJ+BqjfN3RxBFWozrT4txNVOm6HDtJQS2imDfq99RknCCJr060Oup6wnve+4alasufYqSoxmoZ+iOZq7ZzY7/fsqgd++t0fiC2kZx2d7PKE44gSW/hLCe7avMIj1NQb73RKOc7NLzZtzi951k/le7KnVHgiuLtllUID36+G4yWdf8/Z+o80hobFtkfwMOk8ZSXQVzViFpS7eQsWoX435/g8ghsV7PZQwPIWq4tkzShYggCNz10DDeemGtK6HEoSCKLkMmywIOh6tmJio6iOyTpVg0jEILHyg5aBEQqGfkON+L/g4b2Z4/Vyd5qFLIsuiT8oELgchhPRj726u1OkfRoRRKjqa7GTYAp9lG4ufLGPj2PbXKOA7p3IpzvfMio4M5kaJhQFRX6v75IH7fSd59eZ2mDNiZyDqRi0Z14OoZfT1KFXKzTXz/5U727c5AFAT6DWrNtbf2I6SeMpwrwyfGTRCE8cB7gAR8rqrqrLO2G4CvgX5APnC1qqopvrj2+USUJIb/73HWXvEsTqvd42ECQFVxllvZ9sD7TNnxcf0PsgHTOTaSl2dfypplR0hPK6ZN+zDihrQm4WA2ZWU2YntG06lLOI/fuxRbTpmHZuLZSRgNnek39SU5MY+TGSUVdUOCIPDQ0yMbbCzt70h5ViGiTsaJZxxTsdpxWu2VKq3UBVde35s5b653c01KkkDLNqG061h1KUBpiYUv52zh4J6TOBWFHn1acN2t/YiMrnnB9/df7qyWYXvrk2maRdylJRaee3QZ5WW2imdz26YUEg5lM+uDKRiM57c/Xa2NmyAIEjAHGAOkAzsEQViqquqhM3a7DShUVbWjIAjXAK8BV9f22g2BFuP6c+nOjzn03kKyN8VTknjCQ20EIH93EorTWWU/rH8azSIDueYWd0WVdmfV/Tz16ng+e28TRw5mI4gCAYF6ZvxrIDFdz2+coiqsVgcH92Ritzvp1jOa4BAjz74xkcMHsjiWmEdImB/9h7TBr7FJpU8J69Xea+lOQOvIczJsWRklZGWWENU8uFbKIb37t+SWewbxv4+3VRThK4pKZHQQVqsDg0aB9GmOHsnllSdXuk3u9u5IJ/FQNi/PnlItNRot0k9ULvtnMMhMujzWq1j32uWJWK3uCVKKU6XMZGPLhhRGjOlUo3H5Cl+s3AYASaqqHgMQBGE+MBU407hNBZ479e+fgA8EQRDUhpAm5ANCu7RmyEcPkbvtMCvG/EfTuIl6+YIqvq5PQpv48Z/nRlNmsmG12GnS1L9BpsOfyd6d6Xz45oZT41RxOlSmXt2DS6/sQWyv6GolwqiqSk6WCZ1eqvEL7J+IsWkIXe6eQuKnv+I4Q75O8jPQ/827NI85mVHMkYPZ+Afo6d2/JYqiMvvVPzh6JBdZFnE4FGK6NuO+x0fUeDIiSaKb3qOqwo7NaZSWWnn0mUs0jykz2Xj9mVWacWerxcHKpYe49paaye0FBOgwlXpOAgTB1eFi2jW9Kr1PDx3I0pT4slocHDmQdUEYtxbAmXm26cBAb/uoquoQBKEYaApoVzD/TQnv3xl9aKBHDE406Ohw/egG/0Ju6AQE6qvs8JsQn83i+fvJOFFERFQQl13d85y6UPuCwoJy5ry+3sPls/THA7Tr2JTuvasez4E9mXzxwRbKTFZURSW6ZQh3P3wRzesoznihMeCtuwlsE8nBN37AkltEcOdWxL16B60muSviK4rK5+9vPqXQ8lcxc5t2YSQn5uFwKBUv8IRDOXz+/mbue+ziGo3pp3l7Pe4Ju93JkQPZZGWUaK4Mt244jsNLM16nU9XUgqwuoyd1YdmieLcxCQI0iwziqVfGVfm+atosAEEUPOpTJVmkabOqRSzqmga1lBAE4U5BEHYKgrAzN7f2PY0Uu4Os9fvJ+nMfTpu2Vp8vEUSRMb+8jCEsCDnQD0EnIQf60SS2LQPevrvOr/9PZ9fWNN58YQ2HD2RRUmQh6Ugus2f9wfpVR+t1HJv/0FazsFmdrFx6uMrj01MLmT3rDwrzy7FZndjtCmkphbz85AqvmpONuCMIArEPXMHV6QuYYf2dafu/8DBsAH+uOsqOzanYbU5sVicWswOL2UHCoRwP6TOHXWHvjnTKTNouz6rIzdLO7nU4nKSlamcr5mWbvHaBBwgLr/mKfsr0HvQZ2Aqd3iUtZzTKhEcE8uizl1RrIj5mUhd0Ok8TIokCF4/xrbZnTfDFyi0DOLNAp+Wpz7T2SRcEQQZCcCWWuKGq6qfApwBxcXG1clmmL9/Gnze84pbkMezLx2h7+UW1OW2VhPXqwFUnfiBtySbK0vNo2rcT0SN7N67a6hhVVfnm0+2azRa/m7uLISPaV9r+xZcUFZrdGoCeva0qli2O98ioRAW7TWHr+uN1ksn5T2XlL4erLF4+E0kSKS2xVOlB0EKURJwagsaqCqVeBA3admyKwSBrCnmLIpUq4lSFJInc88hF5GaXcjypgNAwPzp1aVbtd1W7jk258fb+fPPZDiRJRMX1HP7rwaFERJ3/Xnq+MG47gE6CILTDZcSuAa47a5+lwAxgC3AlsLYu422lxzJZO/15j3Yx6296ldAurQjt1rauLg2A7GeoVmFnI76jqNCMycuMWlVVMjNKPJot1hWdu0Xy56okj5o2WRarFWs7kVqkHWOxOshIK/LZOP8JqKpK4qEcMtOLiYwOokv3KLeaxXNdhQkCNdKETEnO1zRsp7F4WZH3G9iKBV/vxpbn8BAymHBZLF17RGkeZzbb2bYhhcwTRbRs04SBw9p4zV5sFhlEs8iaGaPhYzrRf1hbDh/IQhJFuvaI1OwecD6o9ShOxdDuBVbiKgX4UlXVeEEQXgB2qqq6FPgC+EYQhCSgAJcBrDOOfPorqpb4rc3B4Tk/M3jOg3V5+UbOAwaD7OH7P43TqeLvX38ZiX0GtKRZRCBZmSUVri1BFDAYZcZNqVrrr1XbJqRrGDiDUaZF64bTCbuhYyq1MmvmKnKySlFVFVEQCGnixxMvj6XJqQzAbj2i2LYp1ePeESUBSXQX0dYbJKZM74muBh6An77d63WbTi96NZiyTuKZ1yfw1Ufb2LczHUVRaRYZyM13D/I6Uco8UcxLT6zAYVdcmZhGmQXf7GbmrAlERvt+ReXnp6Ovl27v5xOfmFhVVZcBy8767Jkz/m0BpvviWtWhNCkTxe65jFcdTpfyeCMXHP4Berr1jCJ+30m37tmCKNCiVQjhEfUX4JYkkadnjWPhd/vYvO4YDqdCz77NueqmvhUv1cqYeFk3dmxOdXOXCQLodCKDhrery6FfUHz+/mYy04vdVky2bBNz3ljP06+OB2Datb3YuzMdq8VR0ZBAr5fo1iuKXn1bsGTBAYoKzYQ28eOyq3syYlzNMgCPHfWeOyeKIn0HeteRDQn144EnRuBwKCiKil4vYbU6WPnLYbauP46sk7h4TEeGDG+HKIl88MaflJXZKjTArRYHNquDT97ZyDOvT6jR+P+ONIz1o4+JHNadjBXb3dKAASSjnsihPc7TqBqpa+64fwgvP/k7RQXlOBwKsk7EP0DPff+tWXZbVRw+kMXKpYcpLCgntlc0Yy/tWqHw7uev54bb+3PD7ecuRdWyTRMeeGIEX3ywBVOpFUVRadEqlLseHva3qYlzWGxI57H8xVxu48CeTA9XoKKopCQVkHKsgE3rktm3M4OmzQLR6yVyskox+um4ZGJnxk/piiSJjJrQGUVRK1yZqqqyad0xfl14kKLCclq3C+PKG3rTqUvlNZeBQQZtF6jgKvDW66teDZ5u82S1OnjhseXknCytyHRMTS5g+8ZUbryzPzlZJo/mFqoKqccKKCm2EBxS8/6TfyeEhlpqFhcXp+7cubNGx1qLTCzqPANrfslfDRRFAX1oIFcc/qraYq6N/P1QFJX4fSfJOFFEZFQQPfvVTVfgZT/Hs/j7fRWrK1knYjDIPP/WxBrHL85GVVXyckzIOqlaK76GQMqiDez4z8eUpeYg+emJuWMSca/eXiOx4tpQkFfGY/cs0azDMhglJMm1+jlt/AwGmf5DW3PbvwcTvz+L4iIz7TuF07yle+nFwnl7WLH0sEcT0IeeGkm3np5uQqvVgd3qZPvmFL6fu8sjeSUgUMfsudPPKdlp9W9H+OHr3R7nMhhlbri9P99+vkNTw1Snl3htztQ67SNXHwiCsEtV1SqL+y7IlZshNJDJ2+aw9d73yFjpMpBRI3szeM4DdWrYbMUmDryxgOM/rEOQRDrNGEe3B6+otiJC5updJHz6K7biMtpMu4iON42pVZfvhoyiqKiq6nPDI4oCPfo091ltm9OpeIyxtMTConl73TIiHXYFp9PO/K92V2ulmJZSyJplR8jNLqNL90hGjYshMPis1keC4DNDWR+c+HUL62981dV7DXCUWUj45BdMqdlcsvD5eh1LaJg/fv46TePmsCun/l7urYe2bUhh384M7HYnquq6R3v2ac49/xmOLIuYSq0s//mQRyaszerk28938MrsKRWfmUqtzP1wK3t3pAMQ0sSPrt0jid+XhaKoFfFUo5+OpIS8Kpvcnsm2jSmaGZ5Wi4NjSXkYjLKmcQsJNdaqdODvxgVp3MCl4D3m11dRnE5QqZPuvGdiLzPzy4B7MKXloFhdmU97X/yGlMUbmbxpNqKu8p96x2OfcOSjpTjKXCnBOZsOcuj9RVy6dQ66oAvnhjSVWPnms+3s2JKG4lRo27EpN905gPadfNdd2hesX5PEonl7KSwwExhkYOK0bky4LBZRFDh8IPtUx273l5yqqOzffXYVjCdb1h/nyw+2VMRQEg/nsHLpYZ57c0KdGbOignJWL0/kWGIu0S1DGDOxS63kpLTY8fhnFYbtNE6zjYzl2ylJzqzXbheiKHDdrXF8OWeLxypLlkXKyzyzE+12Bbvdffz792SydMF+Lr+uNynJ+cg6SbPMI/NEscsVLouoqsqrT//OyYySipVhfm4ZpcUW9EYZc9lf7sn83HLeenENz74xkZbVTBbS6bXfJaLoWoHedu9g5ryxHrvNZaRFUUDWidz678GVpvnb7U52bU0jPbWIqObB9B/aplJZsIZOgyrirgtESapzwwZwdO4KyjPyKgwbgNNio/hIGmlLNlV6bNGRNA7PWVJh2AAc5VZMx7OIf3dhnY25vnE6FV56YgU7tqThdCioKhw/ms+sp1eRWYXOXX2ybmUi33y6ncICV02aqdTKzz/sZ8HXu4HTsQ/tl8TpuIg3rFYHc+dsxXaqGzeA3eakrMzGt5/XzA1fFemphTx+71KW/xxP/L4s1q5IZObDv1ZpiC15xex/7XvWXvkcu2bOpSy9cmGFkgTthqCiXqZgX3KNx19TBg9vx33/vZh2HZvi56+jVdtQ/vXgMILPQbHebnOyZnkiAAGBBq/tl2SdhCS57okjB7PJzTZ5xPtsNifmMhtnR4IcdoXfFh7UPK+53Ma8L3bw7xsXcNe18/nwzQ30HdhK0+jIssSQi9vTO64ljz0/mk5dm9E03J+4wa159vUJlZah5OeW8Z9/LebLOVv55aeDfP3pdh6+fRGZ6Q3nuTxXLnjjVl+kLt7okcAC4DCZSVu6udJjTyzdjOrwdDM4LTaS56322RjPN/t2ZVCYX+7x0NvtTpb+eOA8jcodRVH56du9msXgq5clUF5mI7Z3tKYCiSQJDBrWttLzJ8RnI0qehlFVVA7szqiTrsxffLAFc7m9ojBccboasX7y7iYUL9JORYdSWBhzE3tf+IbURRs4+OYPLOp6M1kb9nu9jjFcWxpMdSoEtDo/TS579m3Bc29O5OPvruGldy8lbnBrRo3rhN5Q/Qmvudy10mrbIYyQUKNHC0edTmTYyPYVq6ITqYVef1etP6+iqKQeK/D43OlUePnJlaxdkYip1IrZbGf7phQWfb+X9jFN3er1JFlkwmXdaNM+jF1b03jjuTWcOF5EeZmdPTvSORKv3Sj3NJ++t4niIkuFO9NqcWAyWfng9T8rPa4h02jcfIQhTNvFI0giei/bztzHy0IA4QLqIpCaXKDZl01RVJIrSZWuT0wlFiwW7YJaWRbJyizBYJC555GL0Oslt5WaU1HZsSWN7ZtTvZ6/0qanXlxGx47m8cpTv3P79O+4b8aP/PzDfg9pKG+YzXbNFyeAw+4kVaNJpSWvmHVXv4ituKzCzahY7TjKLPx53cuaBthittP2X5ch+Z8VN5REAttEEh7XuVrjrQ8umdiFLrGRGAyyq8RCLyHrxIqV19m0aR8GuGKgj8y8hJBQP4x+Mnq9hMEg065TONfe0q9i/4jIICQvK3jNP7GApot4z450crJMbmo1qgqWcgcJ8dluq0hBcBmk3GwTH7+9EavFgdlsx2y2Y7c5+eF/u0g6or3yLjPZSDqS67kqVSE3y0SOF9mwhs7f16HawOjyr8mu8oMydxkdUa8j5tbxlR7bZtowds+c6/G55Geg0y3jNI74exIW7u9VSii8gWRw+QXovcYlHHalItW/d/+WvPL+FGY+9MtfhkaF0hIrn723iZAQo2YD0phukZqzd1EU6NO/pce1U5LzefXp3ytWkvZiJ78tPEjqsQIeeGJEld9HAK+rQVV1f9k6zFY23v4mqYs2uLnXz8RWbKLw4HHCerQHXG7W/320lW16k6gLAAAgAElEQVSbUhEFgfYtOhKVkoDO34BidxAS05LRv7zcoOTnZFnk4ZmjOHokl8P7s/AL0DFwWFsWztvLlvXHPWJ0Z6ruR7UI5u3PL+fAnkwK88tp0z7MI17co29z/Pz1brVz4KqfE0TBI9lDr5eYdLlnI+MjB7I0E0OcGqtCh11hzfJEFFXVdJ3arE5eeWolk6/oztSre7olSdltDq+Ta1FjvH8XGlduPqL56H50uWcqklGPaNAhGfVIRj19X7iZsJ4dKj02qH1zes28EcnfUFEXJAf60aR7W7r++7L6GH69MGBYW02XnN6g/XDXFnO5jc1/HmPN8gSyMkqqdYxOJzFsZHt0Z9UdSbJITLdmhIX/ZYTTjhdoGiqb1cmSBdruO71e4l8PDUVvkCpm93qDRHCIkes1auJ+/GaPp4vU5uTgnkzSqyHFtXLpYc0xAhiNMq3bhVX8/8bb3yRt8Uavhs2FAGe8PD98Yz3bN6XhsCvYbApHuvZn+4SraPLf25my/UOm7v6UgBbnxyVZGYIgENM1gqlX92Ts5K6EhPpx892DuPL63oSF+6M3SMR0i+Cx50cT0829hk2SRHrHtWTkuBjNRChJEnnqlbG0bNME/SlRYoNR5qoZfXnmtfFENQ9Gb5Aw+skEBOq5/b4hdIjx/I1CmvghawgTe0OSBdKOFXpd1TudKst/PsQX72/xuE5oE+2kNVkn/W07UTSu3HxI/9fuJOb2iZxYuhlBlmgzbRiBrauX4tvrietoMTaOo3NXYCsy0XrqUNpcNrTKLMu/E35+Ov77whjefWUdFrMdQRBwOhWm39i3Wm1gzoV9uzKY8/p6BMHlLgQYMrwdt/x7UJWriOtu609JsYX9uzKRdS6x27YdmnLPo8Pd9svKLPEqunsy3bsx7TugFS+9eynrfk8kL9tEl+6RDB3ZoaJAuyCvjJ1b0rDbnRz14kpCgKSE3Eoz7PZsP8Gviw5qGje9XuLuRy6qcJNa8osrXbGdRhfoR5MeLpWU3GwT8fuy3CSqAMrRs/KIlUmPt630XA0NURQYN6Ub42ohRnyaZpFBvPTuZLIySygvs9GydWiF5uKsOVMq7p2WbUI9Sk2yMks4sCcTSRLPccUr0K5TU44n53tdbdlsTrZtSuHKG3pXTNQEQeDWfw/i3VfWVWRYIrjukRl3Dfjbdom/cN6cDYSQTi0JeeSqGh0b3i+G8H4XtuJ7u45NeefzKzielIfF7KBDTDhGH6tumEpdgfCzDc/WDSnEdItg2KjKV9J6vcT9j48gL8dEZnox4RGBHsW8QMUM/HRn5TOJbll5nDUyOohrZvTz+HzdykTmncqaVBT3WqwzEUWRkCqUJpYvOaRpfCVJYMpVPdxEd5O2JOFA8OrKEXQSkl7H8K8fr/AuZGWWIOtED+MGUFxkqUiN/ycT1dzzPhAEgegWnveTqqp889kO1q9OcpUviQKKoiLLomsFp4LDqdC+U1OOJxV41PDJsshlV/dk19Y08vM8E7dOo9NJpB0vdPNCxPaKZuas8Sz98SAnUgqIbhHC5Cu707Fzw1t1V5dG49ZIvSOKgqYbxlfs8JLQYbU6+P3XI1Uat9OERwRWqknZK64l/gF6bFanW5xDr5eYclXPcxs0kH2ylHlf7NQ0Fmcj68QqC9WLCrTb6zidqluSQkpyPh98eZA4b9eVRLrcNYVu91/uVqsWERXk1QUWFGyosWHbvf0EK5YcprjITNcekUy+vHu9aoOCqx5z26YUykw2usRG0qnrX61gLGY7+3dnYrM56NYz2mdd0nduSWPjmmRPo6UTuXpGP4x+MrG9ovHz1/PWC2s4fjQfp9M1gRBEgYdnjsLop+OZ1yew4H+7Wb9Gu/xCcao00Rhz63Zh3PvYcI0j/p40GrdGLjjKTDbPfmgV2zzLNWqKLIs8/ep4PnprA8eT8xFFEYNR4qY7B9BFI5nkTPJzy/hj1VFys0rp1DWCISPas2X9Ma+NKQXBJa8Eruy+/zw7ukrJps7dIsjNNnkkGBiNMh06/xUrmv/VbsyKSFbrjkSdSEJy/vVylfwM9Hjsavo8O8Pj/JHRQcR0beZq7HnG720wyEy+onulY/PG2fJWuVmlbF2fwnNvTPR50bk39u3KqEiBt9uc6A0yHWLCeWTmKA7uO8mHb2xAEF0JOU6nwsTLunHF9X1qfd1Vvx3RTLYCV/x41Pi/vDqPvziG5IQ8khJzCQnxo++gv2rfgoKN3HbfEIx+OlYvS3D7+4uiQHhkAK3b1U/7p/NJo3Fr5IKjS/dIdDrJ40UhioLPY3tNmwXw9KzxFBWasVrsNIsIRKwiRnFgTyazZ/2B4lRxOBR2b0tnyYL99I5rqZkJB9C8ZQiXTu9BYJCBbj2jqhUHuXR6D7ZvTnWVX5x6v8k6kYjoILffITnRFddL6j4QpyTTIuWIa4MgEnz5aHrPvNHrNe7778V8+u5m9u/JQJZFFEVl/NSu1WrtczZFhWYPeSunU8VitvPD/3bzwJMjzul8qqqScCiHXVvTkCSRwcPbVaT1e8Nstnu4tK0WB0lHcln0/T5W/XqkQqz4NCuWHqZ9p3D61LLti7fecg67gqnUfZsgCHTs0oyOXbQ9IMeT8vlj1VGPiU2TMD8efaZ6nbb/7jQat0YuODrEhBPTLYKE+OyKF5EggNFPZsr0uukK4SoRqFr5wuFQ+PDNDe4vT6sDu91BemqRpi6gTicy8KK2DD7HdjcRUUHMfG0C33+5kyMHs9HpJIaObMeVN/Z1q7cz+umwWZ2oosix2P4c79IXnc2C3WBEKJPZfu8v3PrvQZqlDX7+eh54cgQlxRZKisw0iwqqsWTT4QNZ2rJmKhzcd26tqhRF5cM3N7B/dwZWqwMBWLMsgfFTu1a6ytq7PR1R48VvszlZtzLRa3bs778cqbVx6x3XwtUD8KzvbzDKxPbSbkrqjS8+2KwZb7VYHBXlLBc6/+xobyMXJIIg8OBTI7ns2l6ERwQQFGxg8PB2vPD2pPOuiJ6UoFEsCyiKa7bdvlNTt/Ynsk4kKMTI6Ik1K4Ju2TqU/zw3mi9+up6Pv7+GG+8c6NE255IJnd1KH1RJwuYXgCpKKIpKVmYJb76wplKJtOAQIy3bNKmVFuFpt6sWZ5dmVMWOzans35XhmiioLgNpszlZsfQwKcn5Xo+zWOxeJbZc2pPaccniYu345rkw7tKu+Pvr3YrJdXqJth3CNDsOeKPMZCXzhHa2rtOpcCL1n9HNvXHl1sgFiSyLTJoWy6Rpvq+fqw2KU/EmRIIKPPzUSP5YlcQfq45itznpP6QNEy+LJSCwep0lasLkK7qTkpTvavSqqJpZdg67wm+LD3LH/UP/Gq+qkr3xACk/rUeQxP+3d97hUVbZH//cd2oKISQkIQlNauhFuqAgiggoYnetu9bdtez+3HWx7FqX1bWtunZde++KSq+CSIdQExIIoSUhgfRMe+/vj5kMGeadZEIiKdzP88yTycydd859J3nP3HPPOV+6XTGBhJH1D0dW4w2VBp8ci0VjXJhJQNUsnb/LcP/K6fD2ivxdiJKQ3n0TcYZwYN16xrMnqyhoZW0ya0F9GzO25TP7iy0cOlBCl25xXHDZADp3rX2fKyY2gkefnco3n6az/pdcLFYT4yf14LwL+9be2eY4ahsrJSE7sbQ2lHNTKE4iPdISkQYrAyGgT/8krHYLky7ow6QLjjkJh8PN9vRDWCwmuvWMr3NPr76YTIJrbxlB3sESvvt8C9s2Hwoao+uSPVnH2nhJKVl+/ePHeqoKyHhtNj1+ez6jnr/9hPZ0vCUYZ/GfWYvBt9Ky2810SI3h4qsG1etYtWWc/rQoi51b87jlT2cEpbrvzipCEwLdIP44cGgqToebfTnF/uML4U3QOf+iY1+iVi7N5q2XVvnDgvmHStm4dh//98DZAeUXRsTGRXL9bSO5/raR7Nyax49fb+PnpT/QIy2BKTP6kZRct2pERKSV7r3bk7k9PyiMGhVtJTVM9YGWjnJuCsVJxGo18bvbR/PG8yv9kjdmi4bVauK6W0cEjV82P5P331iLZhJIKbHazNw586w6lZ/DQUrJwh928vkHG3E43GhCEBNrx2IJ3vcSgoDarH3fr/I6tup2c9KrZLHrrTl0GD8IZ2EJwqTR6YLRRCSGn5nXb1Ayz7x+MauW76HkaBU9+yTQf3BKvVYuAKPGdWVPVqHhvpOuS/IOlvLvBxfwrxcuDAhVr/8lN2RYMnN7Pvc+NomvP0nnp0VZuFweBg5N5bJrB/vLAdxunfdeWx3wvlJ6V4xvvbyKJ16cHpbjXzIvkw/eXOM/zoF9xfy8bDf3zzqvzqQYgJvuGMOjf/sRh8ON0+HBYvWqFtx+z5mnRDIJKOemUNRJ0eFytmw8iMnsbbsUFd0wVemRY7uSnBrD/Nk7yD9URs++iZwzpXfQRn/Gtnzee2NNwIWyqtLNUw8t5OnXLya6zYmHKnVd8uw/F7N53THZGx1J0eEKw/GW4/ofZrw1J6iPKoC7ooqlVz7qVd4WsOqOFxjxzO9Ju+3CoLHHU1pSxYrF2RzOL6N7rwTGT+qJxaDcIWNbPl99vIl9OUdJSIpm+uUDGTQsNWDMuLO7s2ReZq1dZDxunQU/7OSK64f6H4uMsiKEQfd+4V312OwWrrh+aMBrarIv50hI51iYX05ZqYM2MbUX3zscbj58c22A3boucVS5effVX/j7E+fX+nrwlmk8+eoMVi7JZveuQlI6tmXs2d2JqaPwvzWhnJtCUQtffbyJ77/Y4l05CMHb+ip+d/voemcuHk/n0+K48Y4xtY754eutIVceK5dmM2naie9vrV6xhy0bjDMQzRbNl0Hp9gpdmk3c8PuRnNYj3j/GU2Wctg5eiRt3xTHHt/ruV0gaO4B2/UOfs4xt+Tz9yEI8usTl9LBsYRaff7CBf/z7fNrW0F/buGYfLz65zJ8FW1JcxX+fXMpVvx0WUAdmtZn5++OTWb4oiy8+2GiYZu926+TuCVRFOOucHqxavjvovFutJs48t2dI+6ux2c0hnZuU1FmbCJCdcdiwBytAVsbhsDu/RERYmHh+81FjONmobEmFIgRbNh7gh6+24nLpOBweHFVunE4Pb/73Zwryfn0ZkIK8MsPHnU4Ph0M8V5MjRRVk7sinpDh4hbV4bnANVDVul87pozrx6DPTuO+f5/H825cyfEyXgDHdrjwbc1R4qwDd6SLjzR9CP+/Ref7xJVRVuf3dORxVbo4UVvDe62v846SUvPvq6qA6M6fDwyfvrA/aZ7PazEw8vzeTpqVhMWhAbDZrdDouyaNHWgLnX9TPG8Yza5hMGhariUnT+tRZmA/edltx7aOC8mI0TdBnQFJQpqoRFosppJKDpol6h2hPVdTKTaEIwfzZO0KunH5alM2MOpIcysucaCYR1gXNiJ5pCRzYVxzUtcRmN9OtV3A3+mocVS5efuYn0jccwGIx4XZ5GHFGV373x1H+lYMzRCcMAM0k6NSlXa0dQU67Yjw7X/2Ook1Zx8KTWqBiQDXSo1NVEDr9fFfGYcMEEI9Hsn7VXnRdommC0uKqWlPu9+UcDVhdVjN+Uk9+/GZb0D6iyawZllhcfNUgzhh/GutW5SIlnD6yU9jdUYQQ3DnzLGbdN9f7pajKjd1uJiraxk131r5Sr6Zbz3hsNnNQz1KTSTBkZCfl3MJEOTeFIgRGKx7w7tWU1HKRzcoo4H8vrvIpA0h69knkpjvGkJBUv/6IU2b0Y+XS3Tg8xy5ymknQJsbG6aM6h3zda8+tZMuGA7hdur8geM3KHOyRZq67ZSQAI87owt49RwzblFksJsac1a1W20xWC5MXPU3We/PZ9d58hEkjMjmenK9+8gucVmOOjqDj5OBkmWpcTk/IJAdd9xWpIbxd9UPI9ziqXGxau4+UjjHY7IFfJmLjIpn56CReeeYnCg+XI4DYuAhu/dPYkHWPSckxTDnBMpLUTrE888YlrFmRQ35eKR07t2PoiI5hhSQBNJPGnTPH8+RDC9B1idPpwWY30ybGxvW3hD6PikDEryFr3xgMGzZMrl27tqnNUJzCfPXxJmZ/scWwY8Qtd53BsNHBDibvYCl///PsgFoooXkd0lOvXBR04a0NR5WLz97bwNIFu3A6PAgBQ0Z24obbRgbsQ9WkpLiKP9/0haHTslpNvPj+FVitJqoqXTx49w8U5JcF1LXZ7WYeeHxyULguHJwl5Xw96GYqDxaiO73z12wWYnqkcuHal71JJkbzdLi5/bpPDVfJvfomcv+sY4K9//nnYjav32+olmC1mYhtF8FDT00JWRdYWFCOrkvaJ0Y1+6zBslIHq5bvoSCvjG494zl9ZKewHWRrRgixTko5rK5xauWmUITg3ClpLJqTQVmpwx8atFg0kjq0YciIjoavmfPNtqAQm/Rluq1avoezwkhKAG/Y8OF75pB/qNS/D2Wxmqgoc9KmlizJI4UVWMymkI2jy0odxMVHYo+w8NDTU1j0405+XrYbhGDMmacx+cI+J1xHZ42J4sI1L7Px0ffY89lShFmj+zXnMuje34R0bOBttHzNTcN5/4013v00X6GxxWri2uNWKjfeMZpZ982jsKAMx/Eirg4PRYUVfPNpOsNGd6a81EH3Xu2JqfFFINRKrSCvlPdfX0P6hgMITTB0RCeuvnEYsXGN0/H/RIhuYzvhzjQKtXJTKGrlSFEFX364ifW/5GIya4w7uxsXXDogpAbdg3d/H1DsXJMJk3tyw22jwnrfhT/u5OO31wWtZmx2M3+4exyDh3ud6949R8jaWUDb2AgGDk3B6fRw528/D5JNAW/23H/fu7zZaqxl7sjnx6+3UXCojF59E5g8vZ9hKFfXJR/+bw2L5mTgcRsXxNtsZoQQuN0eJp7fmyt/e3rIlVppSRUz//gt5eVOf4G9pgnaxtp5/MXpja43qGgYauWmUDQC7eIiufH20dx4++iwxientiUnuyioTspqNdEhJVigMhSrV+QYhukcVW5efGoZbreO1epdoWmaQDMJzGaNex4+l/GTerJ0fmbA6602M9Mu7R/Sse3aWcCC73dSVFhOv0HJTJzcm+iY8OroHFUuzBZTgxWb4xOiaRcfyb6co2TvKmLXjgLD8KGmCVI7eRWsPe7gcySlt0FwNYvnZpLaOZYzz+lh+L6L5mTgcLgDOsfouqSiwsXKpdmcPbl+qycpJaXFVVisJiIiG1YTeTKprHThqHTRtl1Esw/ZhoNybgpFI3L+RX1Zt2pvULq6ZtIYO6H2JI2a2CNC/2tWOy0jBfAnH17As69fTESEmXnf7cDt0b36apf25/zpfQ2Pt+CHnXzyzjpcTg9Seuus5n+/g4efqr3R9Ob1+3nv9TUczitDMwlGje3KNbeMOKHs0MKCcv7+f7OpqnB7ZX8OlvJWzioytudxvcFqd8jwjn7F8rpwONz88NXWkM5tx5Y8w5Wuo8rNji159XJuWzcd5K2XVnGksAKJt6XaTXeOoV0ThjfroqS4ijdfWMmWjQcRQhAdY+Pam4fXmrTUEmie8QmFooXSpVsct/75DKKirdgjzNjsZuITopj56Ln16igy/tyeJ9Rh3+X0sHNbPpdcPYSXPriC+2dNZtLUNEqPVrE9/VBQ/VR5mcMf/qx+yuXSKS918Mm760O+z46tebzw+FLyD5ai615l71U/7eGphxaErNGqjS8/2kRluStAz87hcLN8UTaHDgR3uI+Ni+Ty64ZgtZr8qfG1hVuLjxpnvgK0T4hCGKTXm8xavRTA92QV8p9ZiynIK8Pt1vG4dbZtPsRjf5sTUrG8qdF1yb8emEf6hgO43V7VgyOFFbzyzE/s2JrX1OY1CLVya2SklDiPlGKOste6ia5ovQwb3YUhIzqxd/cRLBaN1M6x9Q7zDB7ekVFnduXnpbtxubyZknqY18eyUm8q/pJ5u/jorbXoHolH11k4J4NefRL50/0T/I5g2+ZDmEwaLgJXLroOG1bnhnyPLz7YGLQ6dbt0cvccJTvzMN17GYtoeo8t2bLxALszC2kbF8HIM7qwed3+kEXlWzcepENKcJ3ZpAv60LtfEkvmZVJaXEVK51h++GoLLmfwiaqtH+M5U9NYtXxP0Hw8vk4g1XV2dfHNp+lBK0Bdl5SVOtiwOjeoEL45sD39EEUF5UHZp06nh68+2sS9j01qIssajnJujUjWRwtZ85dXcRQWIzSNbr+ZyKjnb8cceer0c1NATnYR33yymd1ZhbRPiGLaJQOCeh/WhRCC3/1xNBPO68WG1bmUlTpYNMdYLLMmHrdOz7RECgvK+eittQEXW0eVm53b8lg6P9Pflsm7YjE+qNPhISvjMN0NCsb35RwxeAVIJHt3Hwnp3CornMy6fx75B0upqnJjs5n56H9rsYcokdA0ga2WEG2XbnFcf9tI/+9bNhwgK+Nw0LjqDNaCvDLyD5XSISXGH3Lt0i2OG34/iv+99HNQlumP32yjrMzhrw+sjdw9Rww/n6oqd61aeE3J/tyjuEOov+/f27J131RYspHI+fonVtz8tL/Gx1PlJPvDhSy8+MGmNk1xEtm5NY/H7p3D+tW5FB2uIGN7Af99cinzZu84oeOd1iOei38zmFHj6u5labWZOGNCd+ITolizMscwPOh0eFgyN9P/e/9ByQGhwON544WVho+3izfeQ9I0Ues+3cdvr+dAbrE/4cPhcFNV6aa83GkoSCp1ydB6KFzHxBp/kczJLuTRmXO49/ZveeGJpfztD1/z3L+W4HS4OVpUgdPpJioqONLidHhYMi+To0fqFiPtkGIsR2Ozm0noUL8C/pNFYoc2IcO59W060NxQzq2RWHffG3gqAjszeKqc5C1P5+j2nCaySnGyedcnd1LTrzgdHj5+ex0/frWVosPlJ3Tc1Sv2hHxO0wSJHdpw5Q2n+1cxLqcnqG2X354aqzl7hIVLrx4c8tj5B0spPhp8Yb/gkgFBe4JCeLvq9x8UWjX656W7DfefNA1fdxEzQnhr+ixWE+dOTWPx3Ew2rtmHXosTllKya2eBoRYdeEOm2b42X5UVLlwunfT1+/nX3+fxl1u/4oM314Tcl5M6fvXu8jIHa3/ey8Y1+4JamE27dABWW6CDFsKbKTusmSZnDBiSQmSUNSjsarWZmH7FwCayqnFQYclGomSXcYd1zWLiyJY9xPZpfvF2RePidIQOP3ncOp99sJEvPtzEFTcM5dypafU6tlHCQzW9+iYG7Y0MGJrCt5+nB5UTmM0aw8cEXmgHD+vE5x9sMswYBGNl51FndiU/r5TvPt+C2azh8ei0T4jmzw9MqLUIPJSIqKZpTL9iIFFRNnZszUPqOovmZrJwzk5cTq8eWZsYOw/867ygwmqHw81TDy8kJztYJbsaKQlaybpcOtkZhSFtrUbXJZUVLuZ9t51P39vgVbIWAqnLgJrDtH5J3PD7Ubz/+mp0XaLrkoTEaO6YeZa3dVgzxGTSuH/WebzwxFL25xZjMgkEgituGMrgYcaNCloKDTrjQog44BOgK7AHuFxKGRSMF0J4gHTfr3ullHWLO7UwIjrEUbGvIOhx6dGJ7lp3N3FFy8dk1tA0ETIxwuPW8QCfvrOefgOTSenUlrJSB0vnZ5KxvYCk5DZMPL8XScnByROjxnVlybzM4KJum5lxE7sHje/aPZ7hY7qwduVeHL4VhsWiERMbweTjSgKSUtoQ2y4iWIVAQMcusYb6Y0IIpl8+kEnT0sjZfYToNjZSO7UNSpyRUlJ8pBJbhIWICAs9+ySy0yALz+3y0LtvEtFtbKT1T+LBu7+ntMThrz3zVLpxOsp5/fmV/PWhcwJe+9m769mdWVir+nZD2ZNVyKI5GbicHlw1Hn/xqWU88eJ0rxIAcMb4bowc25X9e49ijzAbfpbNjfaJ0Tz89FQK8sqoKHeS0qmtoY5eS6OhXydmAgullI8LIWb6fv+bwbhKKWXo2EcrYODMq1h7z6u4a4QmhdlEm24ptB+mWuicCphMGqeP6sTaVbkB/RqPx+3WWb5oF+Mn9eKRe37A4fDgcnowmQSL52bwx7+eGfStuXuvBMZN7MHyhbv8LapsdjM9eieE1Ja7+c4xDByawqI5GVRWuBg2qjPnTO0d1HdRCMEf/jKOJ/4xH4/Hq6dmtZowW0zc+qextc45ItIaUgpm7aq9vP/aaspKnUgp6T8khRlXDuTZfy72hk19jstqM3HhZQP8pRKH88vYn1scUFQN3hXUji15lJc5AwRjly3MCunYvPPQcDo9IVuS1YXNbiZze0FQNmW1TcsXZTH98mMhPLNZC0stu+hwOSuX7qa0xEHfgR0YMKT+iuONSUvfYzuehjq36cB43/13gCUYO7dWT9rvL6TiQCFbn/kMzWZBd7qIG9yDs794uFVU+yvC47pbR5Kbc5SigvKALhk18aaHO3nnlVWUlzn9+3Mej8Tj8fDqsyt44Z3Lgjb6r715OCPO6MKKRVm4XDojxnZh8OmpIcOAQghGjTstrGSUbj3b8+TLF7Fs4S725Ryla/d4xk3sHrIBcV1sTz/Eq8/8FOAQ0tcfoCCvjIefmsJ3X2whc1s+7eIjOf+ivgypkTRSWeHCZBIBKyT/nDSBw+H2OzcpZUj5HovVxOTpfZl++QC++ngz82ZvD1j5ms0aUkrDJswBx7GY0HXdMKnU7dJDqpfXxuoVe3jtuZVI6a0RXDw3g46dY5n56LnNNoTZ0mjoWUySUh703T8EhIq/2YUQawE38LiU8usGvm+zQwjB6Y/9jgH3XMHRrXuISGpHm24pTW2W4iQT3cbGP5+7gPQNB1jw/Q62bjoYdPG02c0MHJrCS08tN0wd13VJdsZhevVNDHhcCEFav6SwRDNPhJjYCKZdMqBRjvXlR5uC68Y8Oofzyzh6pJJb7joj5GuTO7ZF04wddps2NtrFHWuELISga494dmca7J1JmHRBGmaLiR4wkRoAABHsSURBVEuvGUxklIXvv9xKZYWLqGgr0y7pz7IFu7zNqX2rOiG8+3N2uxmEt23ZX/4xkdUr9pCbc9RQISKtf/0+j/IyJ68/tzKoTGPv7iN8/9VWZlxZu06gIjzqdG5CiAVAB4On7q/5i5RSCiFCfQXqIqXcL4ToBiwSQqRLKbMM3usW4BaAzp2bZ3ZRXVhjokgcfWI6UIrWgaYJBp2eSq++iTxw13ccLar0ZwharSY6do6ts+6tuTY0D5dQiTW6rrNv71H6DDC6pHgxmzWuvnEY77z6S2B/TKuJ624dERQJuebG4Tzx4Hx/uBa8oc5zp6b59wuFEEy9uD9TZvTD6Qu7CiE4a1JPvv9iCyuXZKNLGHlGF8ZO7M6B3GKi29jo0z8JzaTRtl0Ei+dm4vG4/OFSs1kjtl2EofRRbWxYk2uYIORyeVi2YJdybo1Enc5NSnlOqOeEEHlCiGQp5UEhRDKQH+IY+30/s4UQS4AhQJBzk1K+BrwGXlWAsGagUDRTIiIsPPLMVL7/ciurf8pBMwvOnNidSdP6YLWa6TMgiW2bDwWt3jQNuvcO3eGjqXA6PaxesYf09QeIibUzflJPUjvFGo5NSIr2d0qpicmkkdjBuB6sJmPP7k67+Ei+/SydvAMlpHaO5aIrB9IzLTFobI+0BO6fdR5ffLjR2/WkXQRTL+5nuBcphAgoYYiIsHDpNUO49JohAeM6dQnUs6vWifv47XVsXn8Ak0kwcmxXLr9uaL2TL7w9PI0vb6EyVhX1p0GSN0KIJ4HCGgklcVLKe44b0w6okFI6hBDtgZ+B6VLKbbUdW0neKFo7eQdLePivP+J0HksoMZk0b0LJ8OaVhl1R7uSRe36kqLACR5UbTfOqEFx903DGTwrWqNuwOpeXnl4esPLSNEFcfCRPvnLRCWvGtQYK8sq49/Zvg5JgNE0w9uzuYStQnKqEK3nT0L+wx4FzhRCZwDm+3xFCDBNCvOEb0wdYK4TYBCzGu+dWq2NTKE4FkpJj+PdLFzH98gEMOj2ViVN68+h/pjU7xwbwzaebKcgr89eR6brE6fTw/htrKCsJXKE5HW4qyl306d8Bi1XDZvcWZHfpFsd9s847pR0beFe1E6f2DlhBms0aUdFWZlylQpKNhRIrVShOIXKyi9idVUhcfCT9ByWH7WjuvOEzww4eNruZ624ZwdizvbV2B/YV88/75uJyenBUubHZzdjtZu66b3ytzZTri9PhJjfnKFHRVsOmytXkZBdxcH8xHVJi6No9vtHev6FIKdmwZh/zZ++gtMTBwKEpTL6wT4BquMIYJVaqUCj8OBxunn1sMVkZ3kYDmqZhjzBz76OT6JBad6Fxbd+Baxatv/DEUu9em+8hR5Ubl9PDlx9uCiq+PlHmzd7O5+9tRDMJPG6dxOQ23HXv+IC9vPIyB08/sojcnCP+wvqOnWO5+x8T6yU99GshhGDoiE716pupqB+ndnxAoThF+PSd9ezaUYDT4cHp8FBV6aL4SCVPPbLQW8NVB8NGdzZU2tY9OgNP92Z+5h0s4XBeWVA9mK5Ltm/Jo7LC2eB5rF+dy2fvbcDhcFNZ4cLp9LB/71Fm3Tc3oAH0a8+tJCe7yDdXN06Hh5zdR3jtPysabIOiZaCcm0LRypFSsmzhrqAEBim9yQ133vA5KxZn13qMGVcNom07u78xsBDedPsZvxlMbDtvKK2q0o1mMm5YIETjZAJ++2lwv0wpobLSxeZ1+wGvnt0Wn/hmTTxuna2bDwbtESpaJyosqVC0cqqTP0JRWuLg7VdWAXDGhG6GY2La2pn1/AUsnb+LTev20zY2golTegWk5qd2jg1ZfB0XH0mbtg3XNTycX2b4uMetU+B7rrzMgcmsGaoPmEwaZaUOomOaPjTpcLjZuTUPIQS9+yaqziSNjDqbCkUrx2TS6Ng5ln05ocUnnQ4Pn723njHjTwvZLi4i0srk6X2DGi9XYzZrXHvLcN56aZV/dVUtX3PD70edcBu60t0H2fz4RxxauokBVYKdHXpR2CFwr0ozaf7atPiE6JA9GjVN0D4xtN7cyeKXn/bw5n9/9tup65Kb7xzTLNW6WyrKuSkUpwBX3ziMZx9bXOsKrvhoFS6XjtVANDRcxpzVjfYJ0Xz3eTqHDpTQ+bQ4LrxsQFiNhI04uj2H2aNvx13hQLo9WIG++w+yt3t/ctK8vdjNZo3EpGh/GyyzWePSqwfzybvrAzuc2Exc/JtBmJu44/3+3KO8/twKf8uval77zwo6doklObVtE1nWulDOTaE4Beg7MJm/PnwOH765lt27jDXMrDYzFkvDt+F79U3k7n9MDHt8SXEVq1fkUFHuJK1/Ej3TEvyrvDV/fQVXaWVAuqbJ46ZLVjr5PfrgskcweERHfnvcyvCcqWlEtbHx1UebKCwoJz4hihlXDWT0mcZh15PFjq15PDdrcZBjA3B7dBbNyeDqG4c3gWWtD+XcFIpThF59EnnoqSk8OnMOuzMPBzR0tlpNnDu1t2HocPeuQr79LJ19OUdI6diWCy4dQI+0xqlZW//LXl5++ifA21vRajXTq28if7p/AmazxsFFGw3rEGyRNu66rAvdr5wQcq9q9JmnhZQDagr27jnC048sDEqIqUb3yJB7ior6o7IlFYpTjLvuHc9pPeKxWk1ERFowWzRGjutq2B1j07r9zLp/LutX55J/qIyNa/fzxIPzWb0yp8F2lJc5eflpryyO0+lBymNJFvNnbwfAZLcYv1hAdEJMi0rC+O6z9FozRq02E2n9QzeUVtSPlvOXoVAoGoWYtnb+/sT5HNpfQuHhclI7x/rT+WsipeTtGskh1TgdHt595ReGjezUoFZa638x7o7vdHpYPDeT8y/qR/drJ7HztdnojuPU3YQgZeKQoNc2Z3Kyi2othrdHWBh3drCquuLEUCs3heIUpUNqDP0GJRs6NoCiwxWUGnT2B68DOnSgtEHvX1XpCllAXlJcxRcfbEROO5fYvl0wR3ttNEXaMEfZmfjlw5hsVsPXNlcSk0OrIXTpFsdDT04hMqplzak5o1ZuCoXCEKvN5NcuOx5dl9jsxy4fbpeH/bnFREZZSEiqW9IGoN+gZMA4Zd9R5ebbz9KxR5iJGjKJW+9NonzLLiKT4jjtygnY2oX3Hs2JaRf3Z+fWvKCVcFS0lftnTcIWKgSrOCGUc1MoTlGKCiuoKHPQISXGMD2+TYydbr3as2tHQUD/SCEgpWNb4hO89WLL5mfy4VvrkFLi8UiSU2O4429n1anbltKpLaPGdWX1Tzk4HO6A56rfr7p11uxtDu5+6IYGzrhpSeufxPW3jOD9N9YiAanrxMZFcufMs5Rj+xVQqgAKxSnGkaIKXvz3MvZkFWEyCwSCy68fytmTewWNLSwo59G//UhlpYuqSjd2uxmrzcwDj59HUnIM6RsO8PzjSwJWI0JA23YRPP3axZjNte98SClZsSSb+d/voORoFUeLKjCKVJrMGi+/f3mrcAJul7fPpc1uJrVT2xMubj9VUaoACoUiCF2XzLpvLofzy9F1icuXp/HRW2uJjYsI6lIfnxDFU6/OYN0vuRzYV0yH5BhOH93ZX+j97aebDXs9VlW62Lh2H8NGda7VHiEEYyd0Z+yE7mRnHuaJfyygqtIVPFCC263T9E2zGo7ZYqJ7r/ZNbUarRzk3heIUYnv6IUqKqwLCjODNgPz6482GEixmi4mRY7saHi//kHFdlsupUxDiuVB07tqOUIuYxORooqJbg2tTnCxUtqRCcQpx6EAJusd4K6Igr/4FxKmdYw0ft1g0UjrVr42U2WLimpuH+5UHAIQmsNq8vSkVivqgVm4KxSlEaqfYkE2Fk8MQLT2eGVcNJHNHfkBo0mQStG0XwYDByfU+3tgJ3UlIjOb7L7dy6GAJXbvFc8Gl/enUtV29j6U4tVHOTaEIA12XIGWDipabA737JRKfGM2h/cVB7bcu/k1wh5K66JmWyB//eibvvrKakuJKdAn9BnXg5jvGnPC56t0vid79kk7otQpFNSpbUqGohcKCct555RfSNxxAAn0HJHHdrSPpkFL/VU5zobSkitefW8nWTQfRNIE90sLVNw5n1LiuJ3xMKSXFR6uw2c1ERLT8jEZF8yXcbEnl3BSKEFRWOLnnD99QVuLwJ2AI4dU1e+LFC4mJNe7s0VKoKHdSWeGiXXxkyFClQtHcCNe5tewYi0LxK7J8UbavRdSxL4BSgsvpZtGcjCa0rHGIjLISnxClHJuiVaKcm0IRgszt+YbyJC6Xzs5t+U1gkUKhCBfl3BSKECR2aIPJoMOGpok6W0spFIqmRTk3hSIE4yf1xGQKDtmZLRrnTu3dBBYpFIpwUc5NoQhBQlI0t99zFpFRFuwRFiIiLNgjzNx85xg6dlF1VwpFc0bVuSkUtTDo9FReeOdydu0oQEpJj7QELAYd9BUKRfNCOTeFog7MZo20/qqoWKFoSaiwpEKhUChaHcq5KRQKhaLVoZybQqFQKFodyrkpFAqFotWhnJtCoVAoWh3KuSkUCoWi1dFsVQGEEAVATlPb0Qi0Bw43tRGNQGuZB7Seuah5ND9ay1ya8zy6SCkT6hrUbJ1ba0EIsTYceYbmTmuZB7Seuah5ND9ay1xawzxUWFKhUCgUrQ7l3BQKhULR6lDO7dfntaY2oJFoLfOA1jMXNY/mR2uZS4ufh9pzUygUCkWrQ63cFAqFQtHqUM6tkRFCXCaE2CqE0IUQIbONhBCThRA7hRC7hBAzT6aN4SCEiBNCzBdCZPp+GgqYCSE8QoiNvtu3J9vOUNR1foUQNiHEJ77nfxFCdD35VoZHGHO5QQhRUONzuKkp7KwLIcT/hBD5QogtIZ4XQojnffPcLIQYerJtDIcw5jFeCFFc4/P4x8m2MRyEEJ2EEIuFENt816y7DMa0iM/EECmlujXiDegD9AaWAMNCjDEBWUA3wApsAvo2te3H2fhvYKbv/kzgiRDjypra1hM5v8AfgFd8968EPmlquxswlxuA/za1rWHM5UxgKLAlxPNTgB8BAYwCfmlqm09wHuOB2U1tZxjzSAaG+u63ATIM/rZaxGdidFMrt0ZGSrldSrmzjmEjgF1SymwppRP4GJj+61tXL6YD7/juvwNc1IS21Jdwzm/N+X0OTBRCiJNoY7i0hL+VsJBSLgOKahkyHXhXelkFxAohkk+OdeETxjxaBFLKg1LK9b77pcB2IPW4YS3iMzFCObemIRXIrfH7PoL/qJqaJCnlQd/9Q0AotU67EGKtEGKVEKK5OMBwzq9/jJTSDRQD8SfFuvoR7t/KJb6w0edCiE4nx7RGpyX8X4TLaCHEJiHEj0KIfk1tTF34wvJDgF+Oe6rFfiZKifsEEEIsADoYPHW/lPKbk23PiVLbPGr+IqWUQohQabVdpJT7hRDdgEVCiHQpZVZj26qole+Aj6SUDiHErXhXpGc3sU2nMuvx/l+UCSGmAF8DPZvYppAIIaKBL4A/SSlLmtqexkI5txNASnlOAw+xH6j57bqj77GTSm3zEELkCSGSpZQHfWGI/BDH2O/7mS2EWIL3219TO7dwzm/1mH1CCDPQFig8OebVizrnIqWsafcbePdLWyLN4v+iodR0EFLKH4QQLwkh2kspm12vRiGEBa9j+0BK+aXBkBb7maiwZNOwBugphDhNCGHFm9DQbDINfXwLXO+7fz0QtCIVQrQTQth899sDZwDbTpqFoQnn/Nac36XAIunbQW9m1DmX4/ZALsS7d9IS+Ra4zpehNwoorhEabzEIITpU798KIUbgvc42uy9OPhvfBLZLKZ8JMazlfiZNndHS2m7ADLxxaQeQB8z1PZ4C/FBj3BS82UlZeMOZTW77cfOIBxYCmcACIM73+DDgDd/9MUA63gy+dODGpra7tvMLPAJc6LtvBz4DdgGrgW5NbXMD5vIvYKvvc1gMpDW1zSHm8RFwEHD5/kduBG4DbvM9L4AXffNMJ0S2cVPfwpjH7TU+j1XAmKa2OcQ8xgIS2Axs9N2mtMTPxOimOpQoFAqFotWhwpIKhUKhaHUo56ZQKBSKVodybgqFQqFodSjnplAoFIpWh3JuCoVCoWh1KOemUCgUilaHcm4KhUKhaHUo56ZQKBSKVsf/A2hXFe3j8sAUAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "