-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgrid_world_policy_evaluation.py
57 lines (41 loc) · 1.21 KB
/
grid_world_policy_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
np.set_printoptions(1)
UP = 0
DOWN = 1
LEFT = 2
RIGHT = 3
ACTIONS = [UP, DOWN, LEFT, RIGHT]
def reward():
return -1
def policy(state, action):
return 0.25
def get_state(grid, state, action):
row = state // grid.shape[0]
col = state % grid.shape[0]
if action == UP:
row = max(row - 1, 0)
elif action == DOWN:
row = min(row + 1, grid.shape[0] - 1)
elif action == LEFT:
col = max(col - 1, 0)
elif action == RIGHT:
col = min(col + 1, grid.shape[1] - 1)
return grid[row, col]
def get_avg(grid, state):
return sum([policy(state, action) * (get_state(grid, state, action) + reward()) for action in ACTIONS])
def set_state(grid, state, value):
row = state // grid.shape[0]
col = state % grid.shape[0]
grid[row, col] = value
if __name__ == '__main__':
value = np.array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], np.float32)
print(value)
for i in range(112):
prev = value.copy()
for state in range(1, value.size - 1):
avg = get_avg(prev, state)
set_state(value, state, avg)
print(value)