-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
168 lines (140 loc) · 6.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python3
import torch
import os
import time
from video import VideoRecorder
from logger import Logger
from replay_buffer import ReplayBuffer
import utils
import hydra
class Workspace(object):
def __init__(self, cfg):
self.work_dir = os.getcwd()
print(f"workspace: {self.work_dir}")
self.cfg = cfg
self.logger = Logger(
self.work_dir,
save_tb=cfg.log_save_tb,
log_frequency=cfg.log_frequency,
agent=cfg.agent.name,
)
assert 1 >= cfg.risk_level >= 0, f"risk_level must be between 0 and 1 (inclusive), got: {cfg.risk_level}"
assert cfg.seed != -1, f"seed must be provided, got default seed: {cfg.seed}"
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
self.env = utils.make_safety_env(cfg)
cfg.agent.agent.obs_dim = int(self.env.observation_space.shape[0])
cfg.agent.agent.action_dim = int(self.env.action_space.shape[0])
cfg.agent.agent.action_range = [
float(self.env.action_space.low.min()),
float(self.env.action_space.high.max()),
]
self.agent = hydra.utils.instantiate(cfg.agent.agent, _recursive_=False)
self.replay_buffer = ReplayBuffer(
self.env.observation_space.shape,
self.env.action_space.shape,
int(cfg.replay_buffer_capacity),
self.device,
)
self.video_recorder = VideoRecorder(self.work_dir if cfg.save_video else None)
self.step = 0
if cfg.restart_path != "dummy":
self.agent.load(cfg.restart_path)
utils.make_dir(self.work_dir, "data/model_weights")
def evaluate(self):
mean_reward = 0
mean_cost = 0
mean_goals_met = 0
mean_hazard_touches = 0
cost_limit_violations = 0
for episode in range(self.cfg.num_eval_episodes):
obs, _ = self.env.reset()
self.agent.reset()
self.video_recorder.init(enabled=(episode == 0))
done, truncated = False, False
ep_reward = 0
ep_cost = 0
ep_goals_met = 0
ep_hazard_touches = 0
while not done and not truncated:
with utils.eval_mode(self.agent):
action = self.agent.act(obs, sample=False)
obs, reward, done, truncated, info = self.env.step(action)
self.video_recorder.record(self.env)
ep_reward += reward
ep_cost += info.get("cost", 0)
ep_goals_met += 1 if info.get("goal_met", False) else 0
ep_hazard_touches += 1 if (info.get("cost_hazards", 0) > 0) else 0
mean_reward += ep_reward
mean_cost += ep_cost
mean_goals_met += ep_goals_met
mean_hazard_touches += ep_hazard_touches
cost_limit_violations += 1 if (ep_cost > self.cfg.agent.agent.cost_limit) else 0
self.video_recorder.save(f"{self.step}.mp4")
mean_reward /= self.cfg.num_eval_episodes
mean_cost /= self.cfg.num_eval_episodes
mean_goals_met /= self.cfg.num_eval_episodes
mean_hazard_touches /= self.cfg.num_eval_episodes
self.logger.log("eval/mean_reward", mean_reward, self.step)
self.logger.log("eval/mean_cost", mean_cost, self.step)
self.logger.log("eval/mean_goals_met", mean_goals_met, self.step)
self.logger.log("eval/hazard_touches", mean_hazard_touches, self.step)
self.logger.log("eval/cost_limit_violations", cost_limit_violations, self.step)
self.logger.dump(self.step)
self.agent.save(os.path.join(self.work_dir, "data"))
self.agent.save_actor(os.path.join(self.work_dir, "data/model_weights"), self.step)
def run(self):
episode, ep_reward, ep_cost, total_cost, done, truncated = 0, 0, 0, 0, True, True
start_time = time.time()
while self.step < self.cfg.num_train_steps:
if done or truncated:
if self.step > 0:
self.logger.log("train/duration", time.time() - start_time, self.step)
start_time = time.time()
self.logger.dump(self.step, save=(self.step > self.cfg.num_seed_steps))
# evaluate agent periodically
if (self.step > 0 and self.step % self.cfg.eval_frequency == 0):
self.logger.log("eval/episode", episode, self.step)
self.evaluate()
self.logger.log("train/episode_reward", ep_reward, self.step)
self.logger.log("train/episode_cost", ep_cost, self.step)
if self.step > 0:
self.logger.log("train/cost_rate", total_cost / self.step, self.step)
obs, _ = self.env.reset()
self.agent.reset()
done, truncated = False, False
ep_reward = 0
ep_cost = 0
ep_step = 0
episode += 1
self.logger.log("train/episode", episode, self.step)
# sample action for data collection
if self.step < self.cfg.num_seed_steps:
action = self.env.action_space.sample()
else:
with utils.eval_mode(self.agent):
action = self.agent.act(obs, sample=True)
# run training update
if self.step >= self.cfg.num_seed_steps:
self.agent.update(self.replay_buffer, self.logger, self.step)
next_obs, reward, done, truncated,info = self.env.step(action)
cost = info.get("cost", 0)
# allow infinite bootstrap
done = float(done)
done_no_max = 0 if ep_step + 1 == self.env.spec.max_episode_steps else done
ep_reward += reward
ep_cost += cost
total_cost += cost
self.replay_buffer.add(obs, action, reward, cost, next_obs, done, done_no_max)
obs = next_obs
ep_step += 1
self.step += 1
self.agent.save(os.path.join(self.work_dir, "data"))
self.logger.log("eval/episode", episode, self.step)
self.evaluate()
@hydra.main(config_path='config', config_name='train', version_base=None)
def main(cfg):
workspace = Workspace(cfg)
workspace.run()
if __name__ == "__main__":
main()