-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpsycho_nll.m
28 lines (21 loc) · 931 Bytes
/
psycho_nll.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
function L=psycho_nll(theta,S,R)
%PSYCHO_NLL Negative log-likelihood for psychometric function model.
% L=PSYCHO_NLL(THETA,S,R) returns the negative log likelihood for a simple
% orientation discrimination task; where THETA is a model parameter vector,
% with THETA(1) as eta=log(sigma), the log of the sensory noise; THETA(2)
% the bias term; THETA(3) is the lapse rate; S is a vector of stimulus
% orientations (in deg) for each trial; and R the vector of responses
% per trial (1 for "rightwards" and -1 for "leftwards").
% Luigi Acerbi, 2020
sigma = exp(theta(1));
bias = theta(2);
lapse = theta(3);
% Likelihood per trial (analytical solution)
p_vec = lapse/2+(1-lapse)*((R==-1).*normcdf(-(S-bias)/sigma)+(R==1).*normcdf((S-bias)/sigma));
% Total negative log-likelihood
L = -sum(log(p_vec));
end
function z = normcdf(x)
%NORMCDF Normal cumulative distribution function (cdf)
z = 0.5 * erfc(-x ./ sqrt(2));
end