-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtree.go
415 lines (360 loc) · 9.69 KB
/
tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: BUSL-1.1
package adaptive
import (
"bytes"
"fmt"
"strconv"
)
const maxPrefixLen = 10
const (
leafType nodeType = iota
node4
node16
node48
node256
)
type nodeType int
type RadixTree[T any] struct {
root Node[T]
size uint64
maxNodeId uint64
}
// WalkFn is used when walking the tree. Takes a
// key and value, returning if iteration should
// be terminated.
type WalkFn[T any] func(k []byte, v T) bool
func NewRadixTree[T any]() *RadixTree[T] {
rt := &RadixTree[T]{size: 0, maxNodeId: 0}
rt.root = &Node4[T]{
leaf: &NodeLeaf[T]{},
}
rt.root.setId(rt.maxNodeId)
rt.root.getNodeLeaf().setId(rt.maxNodeId + 1)
rt.maxNodeId++
return rt
}
func (t *RadixTree[T]) Clone() *RadixTree[T] {
nt := &RadixTree[T]{
root: t.root.clone(true),
size: t.size,
maxNodeId: t.maxNodeId,
}
return nt
}
// Len is used to return the number of elements in the tree
func (t *RadixTree[T]) Len() int {
return int(t.size)
}
func (t *RadixTree[T]) GetPathIterator(path []byte) *PathIterator[T] {
return t.root.PathIterator(path)
}
func (t *RadixTree[T]) Insert(key []byte, value T) (*RadixTree[T], T, bool) {
txn := t.Txn()
old, ok := txn.Insert(key, value)
return txn.Commit(), old, ok
}
func (t *RadixTree[T]) Get(key []byte) (T, bool) {
return t.iterativeSearch(getTreeKey(key))
}
func (t *RadixTree[T]) Delete(key []byte) (*RadixTree[T], T, bool) {
txn := t.Txn()
old, ok := txn.Delete(key)
return txn.Commit(), old, ok
}
func (t *RadixTree[T]) GetWatch(key []byte) (<-chan struct{}, T, bool) {
val, found, watch := t.iterativeSearchWithWatch(getTreeKey(key))
return watch, val, found
}
func (t *RadixTree[T]) LongestPrefix(k []byte) ([]byte, T, bool) {
key := getTreeKey(k)
var zero T
if t.root == nil {
return nil, zero, false
}
var child, last Node[T]
depth := 0
n := t.root
last = nil
if n.getNodeLeaf() != nil {
last = n.getNodeLeaf()
}
for {
// Bail if the prefix does not match
if n.getPartialLen() > 0 {
prefixLen := checkPrefix(n.getPartial(), int(n.getPartialLen()), key, depth)
if prefixLen != min(maxPrefixLen, int(n.getPartialLen())) {
break
}
depth += int(n.getPartialLen())
}
if depth >= len(key) {
break
}
if n.getNodeLeaf() != nil && bytes.HasPrefix(getKey(key), getKey(n.getNodeLeaf().getKey())) {
last = n.getNodeLeaf()
}
for _, ch := range n.getChildren() {
if ch != nil {
if ch.getNodeLeaf() != nil && bytes.HasPrefix(getKey(key), getKey(ch.getNodeLeaf().getKey())) {
last = ch.getNodeLeaf()
}
}
}
// Recursively search
child, _ = t.findChild(n, key[depth])
if child == nil {
break
}
n = child
depth++
}
if last != nil {
return getKey(last.getKey()), last.getValue(), true
}
return nil, zero, false
}
func (t *RadixTree[T]) Minimum() *NodeLeaf[T] {
return minimum[T](t.root)
}
func (t *RadixTree[T]) Maximum() *NodeLeaf[T] {
return maximum[T](t.root)
}
func (t *RadixTree[T]) iterativeSearch(key []byte) (T, bool) {
var zero T
n := t.root
if n == nil {
return zero, false
}
var child Node[T]
depth := 0
for {
// Might be a leaf
if isLeaf[T](n) {
// Check if the expanded path matches
if n.getArtNodeType() == leafType {
if leafMatches(n.getKey(), key) == 0 {
return n.getValue(), true
}
}
nL := n.getNodeLeaf()
if nL != nil && leafMatches(nL.getKey(), key) == 0 {
return nL.getValue(), true
}
}
// Bail if the prefix does not match
if n.getPartialLen() > 0 {
prefixLen := checkPrefix(n.getPartial(), int(n.getPartialLen()), key, depth)
if prefixLen != min(maxPrefixLen, int(n.getPartialLen())) {
if n.getNodeLeaf() != nil {
if leafMatches(n.getNodeLeaf().getKey(), key) == 0 {
return n.getNodeLeaf().getValue(), true
}
}
for _, ch := range n.getChildren() {
if ch != nil && ch.getNodeLeaf() != nil {
chNodeLeaf := ch.getNodeLeaf()
if leafMatches(chNodeLeaf.getKey(), key) == 0 {
return chNodeLeaf.getValue(), true
}
}
}
return zero, false
}
depth += int(n.getPartialLen())
}
if depth >= len(key) {
if n.getNodeLeaf() != nil {
if leafMatches(n.getNodeLeaf().getKey(), key) == 0 {
return n.getNodeLeaf().getValue(), true
}
}
for _, ch := range n.getChildren() {
if ch != nil && ch.getNodeLeaf() != nil {
chNodeLeaf := ch.getNodeLeaf()
if leafMatches(chNodeLeaf.getKey(), key) == 0 {
return chNodeLeaf.getValue(), true
}
}
}
return zero, false
}
// Recursively search
child, _ = t.findChild(n, key[depth])
if child == nil {
if n.getNodeLeaf() != nil {
if leafMatches(n.getNodeLeaf().getKey(), key) == 0 {
return n.getNodeLeaf().getValue(), true
}
}
for _, ch := range n.getChildren() {
if ch != nil && ch.getNodeLeaf() != nil {
chNodeLeaf := ch.getNodeLeaf()
if leafMatches(chNodeLeaf.getKey(), key) == 0 {
return chNodeLeaf.getValue(), true
}
}
}
return zero, false
}
n = child
depth++
}
}
func (t *RadixTree[T]) iterativeSearchWithWatch(key []byte) (T, bool, <-chan struct{}) {
var zero T
n := t.root
if n == nil {
return zero, false, nil
}
var child Node[T]
depth := 0
for {
// Might be a leaf
if isLeaf[T](n) {
if n.getArtNodeType() == leafType {
if leafMatches(n.getKey(), key) == 0 {
return n.getValue(), true, n.getMutateCh()
}
}
// Check if the expanded path matches
nL := n.getNodeLeaf()
if leafMatches(nL.getKey(), key) == 0 {
return nL.getValue(), true, nL.getMutateCh()
}
}
// Bail if the prefix does not match
if n.getPartialLen() > 0 {
prefixLen := checkPrefix(n.getPartial(), int(n.getPartialLen()), key, depth)
if prefixLen != min(maxPrefixLen, int(n.getPartialLen())) {
if n.getNodeLeaf() != nil {
if leafMatches(n.getNodeLeaf().getKey(), key) == 0 {
return n.getNodeLeaf().getValue(), true, n.getNodeLeaf().getMutateCh()
}
}
for _, ch := range n.getChildren() {
if ch != nil && ch.getNodeLeaf() != nil {
chNodeLeaf := ch.getNodeLeaf()
if leafMatches(chNodeLeaf.getKey(), key) == 0 {
return chNodeLeaf.getValue(), true, chNodeLeaf.getMutateCh()
}
}
}
return zero, false, n.getMutateCh()
}
depth += int(n.getPartialLen())
}
if depth >= len(key) {
if n.getNodeLeaf() != nil {
if leafMatches(n.getNodeLeaf().getKey(), key) == 0 {
return n.getNodeLeaf().getValue(), true, n.getNodeLeaf().getMutateCh()
}
}
for _, ch := range n.getChildren() {
if ch != nil && ch.getNodeLeaf() != nil {
chNodeLeaf := ch.getNodeLeaf()
if leafMatches(chNodeLeaf.getKey(), key) == 0 {
return chNodeLeaf.getValue(), true, chNodeLeaf.getMutateCh()
}
}
}
return zero, false, n.getMutateCh()
}
// Recursively search
child, _ = t.findChild(n, key[depth])
if child == nil {
if n.getNodeLeaf() != nil {
if leafMatches(n.getNodeLeaf().getKey(), key) == 0 {
return n.getNodeLeaf().getValue(), true, n.getNodeLeaf().getMutateCh()
}
}
for _, ch := range n.getChildren() {
if ch != nil && ch.getNodeLeaf() != nil {
chNodeLeaf := ch.getNodeLeaf()
if leafMatches(chNodeLeaf.getKey(), key) == 0 {
return chNodeLeaf.getValue(), true, chNodeLeaf.getMutateCh()
}
}
}
return zero, false, n.getMutateCh()
}
n = child
depth++
}
}
func (t *RadixTree[T]) DeletePrefix(key []byte) (*RadixTree[T], bool) {
txn := t.Txn()
ok := txn.DeletePrefix(key)
return txn.Commit(), ok
}
// findChild finds the child node pointer based on the given character in the ART tree node.
func (t *RadixTree[T]) findChild(n Node[T], c byte) (Node[T], int) {
return findChild(n, c)
}
// Root returns the root node of the tree which can be used for richer
// query operations.
func (t *RadixTree[T]) Root() Node[T] {
return t.root
}
// Walk is used to walk the tree
func (t *RadixTree[T]) Walk(fn WalkFn[T]) {
recursiveWalk(t.root, fn)
}
func (t *RadixTree[T]) DFS(fn DfsFn[T]) {
t.DFSNode(t.root, fn)
}
func (t *RadixTree[T]) DFSPrintTreeUtil(node Node[T], depth int) {
stPadding := " "
for i := 0; i < depth*5; i++ {
stPadding += " "
}
fmt.Print(stPadding + "id -> " + strconv.Itoa(int(node.getId())) + " type -> " + strconv.Itoa(int(node.getArtNodeType())))
fmt.Print(" key -> " + string(node.getKey()))
fmt.Print(" partial -> " + string(node.getPartial()))
fmt.Print(" num ch -> " + string(strconv.Itoa(int(node.getNumChildren()))))
fmt.Print(" ch keys -> " + string(node.getKeys()))
fmt.Print(" much -> ", node.getMutateCh())
if node.getNodeLeaf() != nil {
fmt.Print(" "+"optional leaf", string(node.getNodeLeaf().getKey()))
fmt.Println(" "+"optional leaf much", node.getNodeLeaf().getMutateCh())
}
for _, ch := range node.getChildren() {
if ch != nil {
t.DFSPrintTreeUtil(ch, depth+1)
}
}
}
func (t *RadixTree[T]) DFSPrintTree() {
t.DFSPrintTreeUtil(t.root, 0)
}
// recursiveWalk is used to do a pre-order walk of a node
// recursively. Returns true if the walk should be aborted
func recursiveWalk[T any](n Node[T], fn WalkFn[T]) bool {
// Visit the leaf values if any
if n.isLeaf() && n.getNodeLeaf() != nil && fn(getKey(n.getNodeLeaf().getKey()), n.getValue()) {
return true
}
// Recurse on the children
for _, e := range n.getChildren() {
if e != nil {
if recursiveWalk(e, fn) {
return true
}
}
}
return false
}
type DfsFn[T any] func(n Node[T])
// recursiveWalk is used to do a pre-order walk of a node
// recursively. Returns true if the walk should be aborted
func (t *RadixTree[T]) DFSNode(n Node[T], fn DfsFn[T]) {
// Visit the leaf values if any
fn(n)
// Recurse on the children
for itr := 0; itr < int(n.getNumChildren()); itr++ {
e := n.getChild(itr)
if e != nil {
t.DFSNode(e, fn)
}
}
}