-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathface_detection_multithreading.py
136 lines (111 loc) · 5 KB
/
face_detection_multithreading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import cv2
import time
import argparse
import numpy as np
import tensorflow as tf
from align import detect_and_align
from queue import Queue
from threading import Thread
from utils.app_utils import FPS, WebcamVideoStream, draw_boxes_and_labels
from object_detection.utils import label_map_util
from numba import cuda
CWD_PATH = os.getcwd()
# Path to frozen detection graph. This is the actual model that is used for the object detection.
MODEL_NAME = 'FACE DETECTION MODEL PB FILENAME'
MODEL_DIR = 'ENTER PB FILE DIR HERE'
PATH_TO_CKPT = os.path.join(MODEL_DIR, MODEL_NAME)
def detect_objects(image_np, sess, detection_graph):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
rect_points, class_names, class_colors = draw_boxes_and_labels(
boxes=np.squeeze(boxes),
classes=np.squeeze(classes).astype(np.int32),
scores=np.squeeze(scores),
category_index=category_index,
min_score_thresh=.5
)
return dict(rect_points=rect_points, class_names=class_names, class_colors=class_colors)
def worker(input_q, output_q):
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
mtcnn = detect_and_align.create_mtcnn(sess, None)
fps = FPS().start()
while True:
fps.update()
frame = input_q.get()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
face_patches, padded_bounding_boxes, landmarks = detect_and_align.detect_faces(frame_rgb, mtcnn)
output = dict(face_boxes=padded_bounding_boxes)
output_q.put(output)
fps.stop()
sess.close()
cuda.select_device(0)
cuda.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-src', '--source', dest='video_source', type=int,
default=0, help='Device index of the camera.')
parser.add_argument('-wd', '--width', dest='width', type=int,
default=1920, help='Width of the frames in the video stream.') #480
parser.add_argument('-ht', '--height', dest='height', type=int,
default=1080, help='Height of the frames in the video stream.') #360
parser.add_argument('-model', '--path_to_model', dest='model_path', type=str,
default='20180408-102900.pb', help='Path to FaceNet Model')
args = parser.parse_args()
PATH_TO_CKPT = args.model_path
if not os.path.exists(PATH_TO_CKPT):
print("Model file not found. Enter values to MODEL_NAME, MODEL_DIR")
sys.exit(1)
input_q = Queue(5) # fps is better if queue is higher but then more lags
output_q = Queue()
for i in range(1):
t = Thread(target=worker, args=(input_q, output_q))
t.daemon = True
t.start()
video_capture = WebcamVideoStream(src=args.video_source, width=args.width, height=args.height).start()
fps = FPS().start()
frame_count = 0
while True:
frame_count += 1
frame = video_capture.read()
if frame_count % 5 == 0:
input_q.put(frame)
if output_q.empty():
pass # fill up queue
else:
font = cv2.FONT_HERSHEY_SIMPLEX
data = output_q.get()
face_boxes = data['face_boxes']
for bb in face_boxes:
cv2.rectangle(frame, (bb[0], bb[1]), (bb[2], bb[3]), (122, 244, 66), 4)
cv2.imshow('Video', frame)
fps.update()
if cv2.waitKey(1) & 0xFF == ord('q'):
break
fps.stop()
print('[INFO] elapsed time (total): {:.2f}'.format(fps.elapsed()))
print('[INFO] approx. FPS: {:.2f}'.format(fps.fps()))
video_capture.stop()
cv2.destroyAllWindows()