forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
profiler_legacy.cpp
678 lines (616 loc) · 22.9 KB
/
profiler_legacy.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
#include <torch/csrc/autograd/profiler_legacy.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <ATen/code_template.h>
#include <ATen/core/op_registration/op_registration.h>
#include <torch/library.h>
#include <fstream>
#include <mutex>
#include <string>
#include <vector>
#include <ATen/record_function.h>
#include <c10/core/Allocator.h>
#include <c10/util/ApproximateClock.h>
#include <c10/util/ThreadLocalDebugInfo.h>
#include <c10/util/irange.h>
#include <iostream>
namespace torch::autograd::profiler {
// We decompose the profiler logic into the following components:
//
// ThreadLocalDebugInfo:
//
// ThreadLocalDebugInfo is a thread local mapping from slots into
// the debug information structs.
// ThreadLocalDebugInfo is automatically propagated across thread
// boundaries, including the cases of:
// - launching async jobs with at::launch
// - executing JIT continuations
// - moving from the forward threads into autograd (backward) threads
//
// Entries in ThreadLocalDebugInfo are managed by DebugInfoGuard
// which can be used to add or overwrite an entry in the thread local
// mapping. A corresponding entry is removed when the guard is destroyed,
// potentially revealing the previously set value for the same slot.
//
// For the async tasks, slots previously set in the main thread before
// launching of an async task are shared and visible in the async task.
//
// On the other hand, any adding or overwriting of the mapping by the
// async task is not visible to the main thread and any modification
// (including removal of the entries) in the main thread is not visible
// to the async task if it happens after launching the task.
//
// We use ThreadLocalDebugInfo (slot PROFILER_STATE) to store profiler config,
// as well as a list of events that happen during profiling.
// An instance of ThreadLocalDebugInfo is created each time we enter
// profiler (i.e. enter profiling context manager/call enableConfig) and
// uniquely identifies a profiling run.
//
// We automatically propagate ThreadLocalDebugInfo into async tasks,
// as well as across JIT continuations and autograd thread, so all
// the operations that happen between profiling start and end
// (not necessarily within the same thread) are recorded.
// Unless the profiling slot is overwritten as in the case of nested
// profiling ranges (in this case events for the subrange are handled
// by the nested profiler)
//
// When we exit a profiling range (either by exiting profiling context
// manager or by calling disableProfiler), we remove the previously set
// profiling entry for the given thread local mapping, and consolidate
// events in the profiling result
//
//
// ThreadLocalState:
//
// ThreadLocalState takes a 'snapshot' of thread local variables
// using provided getters. It is used together with ThreadLocalStateGuard
// to transfer the snapshot across thread boundary and set the thread local
// values as in the parent task.
//
// Profiler uses ThreadLocalState to propagate profiler's thread local state.
// ThreadLocalState also automatically propagates profiler callbacks.
//
//
// at::RecordFunction and observers
//
// Profiler uses observers mechanism to add a pair of thread local callbacks
// that are executed on a number of predetermined ranges, including:
// - c10/ATen ops
// - TorchScript functions/methods
// - user defined named ranges (see `record_function` python context manager)
//
// Profiler setups a pair of callbacks that record profiling events and save
// them into the thread local profiler struct (ThreadLocalDebugInfo,
// PROFILER_STATE slot)
//
//
// Thus, the overall logic is:
//
// enableProfiler:
// - checks that profiler is not enabled (otherwise throws)
// - pushes new ThreadLocalDebugInfo (slot PROFILER_STATE) as the profiler
// config for the current thread
// - pushes profiling callbacks for the current thread
//
// disableProfiler:
// - pops PROFILER_STATE slot from the current ThreadLocalDebugInfo and
// consolidates events
// - removes profiling callbacks
//
// ThreadLocalState:
// - propagates ThreadLocalDebugInfo across threads
// - propagates profiler callbacks across threads
//
// Profiler callbacks:
// - get the current profiling state (PROFILER slot in ThreadLocalDebugInfo)
// - save profiling events into the profiling state
//
namespace {
using torch::profiler::impl::ActiveProfilerType;
using torch::profiler::impl::ProfilerStateBase;
struct ProfilerLegacyThreadLocalState : public ProfilerStateBase {
explicit ProfilerLegacyThreadLocalState(
const torch::profiler::impl::ProfilerConfig& config)
: ProfilerStateBase(config), remoteProfiledEvents_{c10::nullopt} {}
~ProfilerLegacyThreadLocalState() override = default;
static ProfilerLegacyThreadLocalState* getTLS() {
auto tls = ProfilerStateBase::get(/*global=*/false);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
tls == nullptr || tls->profilerType() == ActiveProfilerType::LEGACY);
return static_cast<ProfilerLegacyThreadLocalState*>(tls);
}
thread_event_lists consolidate();
void mark(std::string name, bool include_cuda = true);
void setOrAddRemoteProfiledEvents(
std::vector<LegacyEvent>&& remoteProfiledEvents);
void pushRange(
const at::RecordFunction& fn,
const bool record_cuda,
std::vector<std::vector<int64_t>>&& shapes = {});
void popRange(const at::RecordFunction& fn, const bool record_cuda);
void reportMemoryUsage(
void* /* unused */,
int64_t alloc_size,
size_t /* total_allocated, unused for legacy */,
size_t /* total_reserved, unused for legacy */,
c10::Device device) override;
ActiveProfilerType profilerType() override {
return ActiveProfilerType::LEGACY;
}
void leakHandle() {
handle_ = 0;
}
protected:
RangeEventList& getEventList(
std::optional<uint64_t> thread_id = std::nullopt);
std::mutex state_mutex_;
std::unordered_map<uint64_t, std::shared_ptr<RangeEventList>>
event_lists_map_;
c10::optional<std::vector<std::vector<LegacyEvent>>> remoteProfiledEvents_;
};
thread_event_lists ProfilerLegacyThreadLocalState::consolidate() {
std::lock_guard<std::mutex> g(state_mutex_);
thread_event_lists result;
for (auto& kv : event_lists_map_) {
auto& list = kv.second;
result.emplace_back(list->consolidate());
}
// Consolidate remote events if applicable as well.
if (remoteProfiledEvents_) {
result.insert(
result.end(),
std::make_move_iterator(remoteProfiledEvents_->begin()),
std::make_move_iterator(remoteProfiledEvents_->end()));
}
return result;
}
void ProfilerLegacyThreadLocalState::mark(std::string name, bool include_cuda) {
if (config_.disabled()) {
return;
}
if (config_.state == torch::profiler::impl::ProfilerState::NVTX) {
torch::profiler::impl::cudaStubs()->mark(name.c_str());
} else {
LegacyEvent evt(
EventKind::Mark,
at::StringView(std::move(name)),
at::RecordFunction::currentThreadId(),
include_cuda &&
config_.state == torch::profiler::impl::ProfilerState::CUDA);
evt.setNodeId(at::RecordFunction::getDefaultNodeId());
getEventList().record(std::move(evt));
}
}
void ProfilerLegacyThreadLocalState::setOrAddRemoteProfiledEvents(
std::vector<LegacyEvent>&& remoteProfiledEvents) {
// Lock to serialize access from multiple callback threads.
std::lock_guard<std::mutex> guard(state_mutex_);
if (remoteProfiledEvents_) {
(*remoteProfiledEvents_).emplace_back(remoteProfiledEvents);
} else {
remoteProfiledEvents_ = {std::move(remoteProfiledEvents)};
}
}
void ProfilerLegacyThreadLocalState::pushRange(
const at::RecordFunction& fn,
const bool record_cuda,
std::vector<std::vector<int64_t>>&& shapes) {
if (config_.disabled()) {
return;
}
if (config_.state == torch::profiler::impl::ProfilerState::NVTX) {
torch::profiler::impl::cudaStubs()->rangePush(
torch::profiler::impl::getNvtxStr(fn.name(), fn.seqNr(), shapes)
.c_str());
} else {
LegacyEvent evt(
EventKind::PushRange,
at::StringView(std::string(fn.name())),
at::RecordFunction::currentThreadId(),
record_cuda,
fn.handle(),
std::move(shapes),
at::RecordFunction::getDefaultNodeId(),
fn.isAsync());
evt.setSequenceNr(fn.seqNr());
evt.setFwdThreadId(fn.forwardThreadId());
evt.setScope((uint8_t)fn.scope());
if (config_.with_flops) {
evt.setExtraArgs(torch::profiler::impl::saveExtraArgs(fn));
evt.setFlops(torch::profiler::impl::computeFlops(
std::string(fn.name()), evt.extraArgs()));
}
// TODO: will unify the two macros BUILD_LITE_INTERPRETER and C10_MOBILE soon.
#if !defined BUILD_LITE_INTERPRETER && !defined C10_MOBILE
// backward nodes source range corresponds to the forward node
// TODO: consider using C++ stack trace
if (config_.with_stack &&
fn.scope() != at::RecordScope::BACKWARD_FUNCTION) {
auto cs =
torch::profiler::impl::prepareCallstack(jit::currentCallstack());
if (cs.empty()) {
cs = torch::profiler::impl::prepareCallstack(
jit::tracer::pythonCallstack());
}
evt.setStack(callstackStr(cs));
}
#endif
getEventList().record(std::move(evt));
}
}
void ProfilerLegacyThreadLocalState::popRange(
const at::RecordFunction& fn,
const bool record_cuda) {
if (config_.disabled()) {
return;
}
if (config_.state == torch::profiler::impl::ProfilerState::NVTX) {
torch::profiler::impl::cudaStubs()->rangePop();
} else {
// In some cases RecordFunction (and popRange) may be
// called on a different thread than pushRange
// As a convention, we put the async pop on the original
// thread and save current thread id in pop event
LegacyEvent evt(
EventKind::PopRange,
at::StringView(""),
at::RecordFunction::currentThreadId(),
record_cuda,
fn.handle());
evt.setNodeId(at::RecordFunction::getDefaultNodeId());
getEventList(fn.threadId()).record(std::move(evt));
}
}
void ProfilerLegacyThreadLocalState::reportMemoryUsage(
void* /* unused */,
int64_t alloc_size,
size_t /* total_allocated, unused for legacy */,
size_t /* total_reserved, unused for legacy */,
c10::Device device) {
if (config_.profile_memory && !config_.disabled()) {
uint64_t thread_id = at::RecordFunction::currentThreadId();
LegacyEvent evt(
EventKind::MemoryAlloc,
at::StringView(""),
thread_id,
config_.state == torch::profiler::impl::ProfilerState::CUDA);
evt.updateMemoryStats(alloc_size, device);
getEventList(thread_id).record(std::move(evt));
}
}
RangeEventList& ProfilerLegacyThreadLocalState::getEventList(
std::optional<uint64_t> thread_id) {
if (!thread_id.has_value()) {
thread_id = at::RecordFunction::currentThreadId();
}
RangeEventList* list_ptr = nullptr;
std::lock_guard<std::mutex> guard(state_mutex_);
auto it = event_lists_map_.find(thread_id.value());
if (it != event_lists_map_.end()) {
list_ptr = it->second.get();
} else {
auto event_list = std::make_shared<RangeEventList>();
event_lists_map_[thread_id.value()] = event_list;
list_ptr = event_list.get();
}
return *list_ptr;
}
enum EventIValueIdx {
KIND = 0,
NAME,
THREAD_ID,
HANDLE,
NODE_ID,
CPU_MEM_USAGE,
CPU_NS,
CUDA_RECORDED,
CUDA_MEM_USAGE,
CUDA_DEVICE,
CUDA_US,
SHAPES,
NUM_EVENT_IVALUE_IDX // must be last in list
};
const std::unordered_set<std::string> disable_cuda_profiling = {
"aten::view",
"aten::t",
"aten::transpose",
"aten::stride",
"aten::empty",
"aten::empty_like",
"aten::empty_strided",
"aten::as_strided",
"aten::expand",
"aten::resize_",
"aten::squeeze",
"aten::unsqueeze",
"aten::slice",
"aten::_unsafe_view",
"aten::size"};
void pushProfilingCallbacksLegacy() {
auto registration_state_ptr = ProfilerLegacyThreadLocalState::getTLS();
TORCH_INTERNAL_ASSERT(registration_state_ptr, "Expected profiler state set");
auto handle = at::addThreadLocalCallback(
at::RecordFunctionCallback(
[](const at::RecordFunction& fn)
-> std::unique_ptr<at::ObserverContext> {
auto state_ptr = ProfilerLegacyThreadLocalState::getTLS();
if (!state_ptr || state_ptr->config().disabled()) {
return nullptr;
}
bool record_cuda = state_ptr->config().state ==
torch::profiler::impl::ProfilerState::CUDA;
if (record_cuda &&
disable_cuda_profiling.find(fn.name()) !=
disable_cuda_profiling.end()) {
record_cuda = false;
}
if (state_ptr->config().report_input_shapes) {
auto sizes = torch::profiler::impl::inputSizes(fn);
state_ptr->pushRange(fn, record_cuda, std::move(sizes));
} else {
state_ptr->pushRange(fn, record_cuda);
}
return nullptr;
},
[](const at::RecordFunction& fn, at::ObserverContext*) {
auto state_ptr = ProfilerLegacyThreadLocalState::getTLS();
if (!state_ptr || state_ptr->config().disabled()) {
return;
}
bool record_cuda = state_ptr->config().state ==
torch::profiler::impl::ProfilerState::CUDA;
if (record_cuda &&
disable_cuda_profiling.find(fn.name()) !=
disable_cuda_profiling.end()) {
record_cuda = false;
}
state_ptr->popRange(fn, record_cuda);
})
.needsInputs(registration_state_ptr->config().report_input_shapes)
.needsIds(true));
registration_state_ptr->setCallbackHandle(handle);
}
} // namespace
void enableProfilerLegacy(
const torch::profiler::impl::ProfilerConfig& new_config) {
TORCH_CHECK(
new_config.state != torch::profiler::impl::ProfilerState::NVTX ||
torch::profiler::impl::cudaStubs()->enabled(),
"Can't use NVTX profiler - PyTorch was compiled without CUDA");
TORCH_CHECK(new_config.state != torch::profiler::impl::ProfilerState::KINETO);
auto state_ptr = ProfilerLegacyThreadLocalState::getTLS();
TORCH_CHECK(!state_ptr, "Profiler is already enabled on this thread");
auto state = std::make_shared<ProfilerLegacyThreadLocalState>(new_config);
c10::ThreadLocalDebugInfo::_push(c10::DebugInfoKind::PROFILER_STATE, state);
pushProfilingCallbacksLegacy();
state->mark("__start_profile", false);
}
thread_event_lists disableProfilerLegacy(
c10::optional<ProfilerDisableOptions> profilerDisableOptions) {
auto cleanupTLSState =
profilerDisableOptions ? profilerDisableOptions->cleanupTLSState : true;
auto consolidate =
profilerDisableOptions ? profilerDisableOptions->consolidate : true;
// all the DebugInfoBase objects are scope based and supposed to use
// DebugInfoGuard
std::shared_ptr<c10::DebugInfoBase> state;
if (cleanupTLSState) {
state = c10::ThreadLocalDebugInfo::_pop(c10::DebugInfoKind::PROFILER_STATE);
} else {
state =
c10::ThreadLocalDebugInfo::_peek(c10::DebugInfoKind::PROFILER_STATE);
}
auto state_ptr = static_cast<ProfilerLegacyThreadLocalState*>(state.get());
TORCH_CHECK(
state_ptr && !state_ptr->config().disabled(),
"Can't disable profiler when it's not running");
cleanupTLSState ? state_ptr->removeCallback() : state_ptr->leakHandle();
if (!consolidate ||
state_ptr->config().state == torch::profiler::impl::ProfilerState::NVTX) {
return thread_event_lists();
}
state_ptr->mark("__stop_profile", false);
// Note that this will erase the underlying events.
return state_ptr->consolidate();
}
void addEventList(std::vector<LegacyEvent>&& profiledEvents) {
auto state_ptr = ProfilerLegacyThreadLocalState::getTLS();
TORCH_CHECK(state_ptr, "Profiler must be enabled.");
state_ptr->setOrAddRemoteProfiledEvents(std::move(profiledEvents));
}
void LegacyEvent::record(bool record_cuda) {
if (record_cuda) {
torch::profiler::impl::cudaStubs()->record(&device_, &cuda_event, &cpu_ns_);
return;
}
cpu_ns_ = c10::getTime();
}
/* static */ LegacyEvent LegacyEvent::fromIValue(
const at::IValue& eventIValue) {
TORCH_INTERNAL_ASSERT(
eventIValue.isList(),
"Expected IValue to contain type c10::impl::GenericList");
auto ivalues = eventIValue.toList();
TORCH_INTERNAL_ASSERT(
ivalues.size() >= NUM_EVENT_IVALUE_IDX,
"Expected at least ",
NUM_EVENT_IVALUE_IDX,
" elements to reconstruct LegacyEvent.");
// Reconstruct input shapes from ivalues.
const auto& shapeListIValue = ivalues.get(EventIValueIdx::SHAPES);
TORCH_INTERNAL_ASSERT(
shapeListIValue.isList(),
"Expected profiler shapes IValue to contain type c10::impl::GenericList.");
auto shapeList = shapeListIValue.toList();
std::vector<std::vector<int64_t>> shapes;
shapes.reserve(shapeList.size());
for (const auto i : c10::irange(shapeList.size())) {
std::vector<int64_t> s;
const auto& shapeIValue = shapeList.get(i);
TORCH_INTERNAL_ASSERT(
shapeIValue.isList(),
"Expected each profiler shape element to contain shapes of type c10::impl::GenericList.")
auto curShapesList = shapeIValue.toList();
s.reserve(curShapesList.size());
for (const auto j : c10::irange(curShapesList.size())) {
s.emplace_back(curShapesList.get(j).toInt());
}
shapes.emplace_back(s);
}
LegacyEvent evt(
static_cast<EventKind>(
ivalues.get(EventIValueIdx::KIND).toInt()), // EventKind
at::StringView(ivalues.get(EventIValueIdx::NAME).toStringRef()), // name
ivalues.get(EventIValueIdx::THREAD_ID).toInt(), // thread_id
static_cast<at::RecordFunctionHandle>(
ivalues.get(EventIValueIdx::HANDLE).toDouble()), // handle
std::move(shapes), // input shapes
ivalues.get(EventIValueIdx::NODE_ID).toInt(), // node id
true, // is remote
ivalues.get(EventIValueIdx::CPU_MEM_USAGE).toInt(), // cpu_mem_usage
ivalues.get(EventIValueIdx::CPU_NS).toInt(), // cpu_ns
ivalues.get(EventIValueIdx::CUDA_RECORDED).toBool(), // was cuda recorded
ivalues.get(EventIValueIdx::CUDA_MEM_USAGE).toInt(), // cuda memory usage
c10::DeviceIndex(
ivalues.get(EventIValueIdx::CUDA_DEVICE).toInt()), // device
static_cast<double>(
ivalues.get(EventIValueIdx::CUDA_US).toInt()) // cuda_us
);
return evt;
}
at::IValue LegacyEvent::toIValue() const {
c10::impl::GenericList eventIValueList(at::AnyType::get());
eventIValueList.reserve(NUM_EVENT_IVALUE_IDX);
eventIValueList.emplace_back(static_cast<int64_t>(kind_));
eventIValueList.emplace_back(std::string(name_.str()));
eventIValueList.emplace_back(static_cast<int64_t>(thread_id_));
eventIValueList.emplace_back(static_cast<double>(handle_));
eventIValueList.emplace_back(node_id_);
eventIValueList.emplace_back(cpu_memory_usage_);
eventIValueList.emplace_back(cpu_ns_);
// CUDA event information
bool cuda_profiling_enabled = hasCuda();
eventIValueList.emplace_back(cuda_profiling_enabled);
eventIValueList.emplace_back(static_cast<int64_t>(cuda_memory_usage_));
eventIValueList.emplace_back(device_);
eventIValueList.emplace_back(cuda_us_);
// Shapes
c10::impl::GenericList shapesList =
c10::impl::GenericList(at::ListType::create(at::IntType::get()));
shapesList.reserve(shapes_.size());
for (const auto& shape : shapes_) {
c10::impl::GenericList s = c10::impl::GenericList(at::IntType::get());
s.reserve(shape.size());
for (const auto& k : shape) {
s.emplace_back(k);
}
shapesList.emplace_back(s);
}
eventIValueList.emplace_back(shapesList);
return at::IValue(eventIValueList);
}
double LegacyEvent::cudaElapsedUs(const LegacyEvent& e) const {
TORCH_CHECK(e.hasCuda() && hasCuda(), "Events were not recorded for CUDA");
TORCH_CHECK(
e.device() == device(),
c10::str(
"Events are not on the same device: ", e.device(), " vs ", device()));
if (isRemote() && e.isRemote()) {
// validate that cuda_us_ has been set properly.
TORCH_INTERNAL_ASSERT(cuda_us_ >= 0 && e.cuda_us_ >= 0);
return static_cast<double>(e.cuda_us_ - cuda_us_);
}
return torch::profiler::impl::cudaStubs()->elapsed(
&cuda_event, &e.cuda_event);
}
static const at::jit::CodeTemplate event_template(R"(
{
"name": "${name}",
"ph": "X",
"ts": ${ts},
"dur": ${dur},
"tid": ${tid},
"pid": "CPU Functions",
"args": {}
})");
void writeProfilerEventsToStream(
std::ostream& out,
const std::vector<LegacyEvent*>& events) {
TORCH_CHECK(out, "Could not open file");
LegacyEvent* profiler_start = nullptr;
for (LegacyEvent* e : events) {
if (0 == strcmp(e->name(), "__start_profile")) {
profiler_start = e;
break;
}
}
TORCH_CHECK(profiler_start, "Could not find __start_profile mark");
struct PairHash {
size_t operator()(
std::pair<at::RecordFunctionHandle, int> p) const noexcept {
return std::hash<at::RecordFunctionHandle>()(p.first) ^
std::hash<int64_t>()(p.second);
}
};
std::unordered_map<
std::pair<at::RecordFunctionHandle, int64_t>,
LegacyEvent*,
PairHash>
events_map;
out << "[\n";
bool first = true;
for (LegacyEvent* evt : events) {
if (evt->kindStr() == "push") {
events_map[std::make_pair(evt->handle(), evt->nodeId())] = evt;
} else if (evt->kindStr() == "pop") {
if (!first) {
out << ",\n";
}
first = false;
auto it = events_map.find(std::make_pair(evt->handle(), evt->nodeId()));
TORCH_CHECK(it != events_map.end(), "Unmatched pop event");
LegacyEvent* evt_start = it->second;
events_map.erase(it);
at::jit::TemplateEnv env;
env.s("name", evt_start->name());
env.d("ts", profiler_start->cpuElapsedUs(*evt_start));
env.d("dur", evt_start->cpuElapsedUs(*evt));
env.d("tid", evt_start->threadId());
out << event_template.format(env);
}
}
out << "]\n";
}
RecordProfile::RecordProfile(std::ostream& out) : out_(out) {
init();
}
RecordProfile::RecordProfile(const std::string& filename)
: file_(new std::ofstream(filename)), out_(*file_) {
init();
}
void RecordProfile::init() {
enableProfilerLegacy(torch::profiler::impl::ProfilerConfig(
torch::profiler::impl::ProfilerState::CPU));
}
RecordProfile::~RecordProfile() {
try {
thread_event_lists event_lists = disableProfilerLegacy();
std::vector<LegacyEvent*> events;
for (auto& l : event_lists) {
for (auto& e : l) {
events.push_back(&e);
}
}
processEvents(events);
} catch (const std::exception& e) {
LOG(ERROR) << e.what() << '\n';
} catch (...) {
LOG(ERROR) << "Unknown error" << '\n';
}
}
void RecordProfile::processEvents(const std::vector<LegacyEvent*>& events) {
writeProfilerEventsToStream(out_, events);
}
} // namespace torch::autograd::profiler