forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_dispatch.py
955 lines (873 loc) · 40.4 KB
/
test_dispatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
# Owner(s): ["module: dispatch"]
import torch._C as C
from torch.testing._internal.common_utils import TestCase, run_tests
from torch._python_dispatcher import PythonDispatcher
from collections import namedtuple
import itertools
import os
import re
import torch.utils.cpp_extension
# TODO: Expand the dispatcher API to be a generic API for interfacing with
# the dispatcher from Python!
#
# These are exhaustive tests for commutativity of dispatch behavior. If you're
# looking for more usage-info style tests, check op_registration_test.cpp
#
# Things not tested here:
# - Listeners
# - Top level namespace registrations
# - Fallback
# - Exotic overloads of CppFunction/schema
#
# Things not directly tested here:
# - Internal state of Dispatcher makes sense. This is indirectly
# tested by the invariant testing
Result = namedtuple('Result', 'state table provenance')
dispatch_keys_to_check = (
'Undefined',
'CPU',
'CUDA',
'XLA',
'AutogradOther',
'AutogradCPU',
'AutogradCUDA',
'AutogradXLA')
def extract_dispatch_table_with_keys(table, dispatch_keys):
extracted = ''
table_entries = table.split('\n')
regex = re.compile(r"registered at .*FallbackKernel\.cpp.*(\[)")
for k in dispatch_keys:
for t in table_entries:
if t.startswith(k):
# mask out file:line info for in-tree backend fallback
entry = regex.sub('registered in pytorch framework [', t)
extracted += (entry + '\n')
return extracted
class TestDispatch(TestCase):
namespace_index = 0
def test_all_invariants(self):
# Check that the regular stuff is OK!
C._dispatch_check_all_invariants()
# You probably don't want to call this directly; if your constructors
# don't commute, you can still run commute with a fixed ctor_order
# so that you can test that the destructors still commute
def run_ops(self, name, ops, ctor_order=None, dtor_order=None,
results=None, expect_raises=False):
"""
Given a list of operator registrations, run the registrations in the
order specified by ctor_order, and then run the deregistrations in
dtor_order.
If results is specified, intermediate results are checked for consistency
with results stored in results (and stored in results if this is the
first time we've seen them). Results are expected to be equivalent
modulo commutativity and inverses (thus, results is keyed on a frozenset
of in effect registrations from ops). Results stores namedtuple
Result[state, table, provenance], where state is a string that contains
non-derived kernel registered or error message if it doesn't pass;
table is a string that contains computed dispatch table entries;
provenance is a string that describes how exactly we got this string.
If expect_raises is True, it is not an error to raise an exception. Instead,
we'll store the exception string (instead of the dispatcher state)
in results. In principle we should flag these differently, but it's
very obvious when you get an error in one case but not another.
"""
# By allocating every test into a fresh namespace, this makes it less
# likely that a bug in the testing framework will result in tests
# interfering with each other
self.__class__.namespace_index += 1
if results is None:
results = {}
if ctor_order is None:
ctor_order = list(range(len(ops)))
if dtor_order is None:
dtor_order = list(reversed(ctor_order))
# Refs which retain the c10::Module object so we can explicitly control
# when each deregistration happens (deregistration occurs when the
# object gets deallocated).
refs = [None] * len(ops)
# Keep track of the set "in effect" registrations
active_ops = set()
# double underscore to make it less likely we conflict with something
# else
test_namespace = f"__test{self.namespace_index}__"
def check_invariants(actual_provenance):
C._dispatch_check_invariants(name)
# Normalize the test namespace so that expected outputs are stable
actual_state = C._dispatch_dump(
f"{test_namespace}::{name}").replace(test_namespace, "test")
actual_table = C._dispatch_dump_table(
f"{test_namespace}::{name}").replace(test_namespace, "test")
expected_state, expected_table, expected_provenance = results.setdefault(
frozenset(active_ops),
Result(actual_state, actual_table, actual_provenance)
)
self.assertMultiLineEqual(
expected_state, actual_state,
f"expected from {expected_provenance}; actual from {actual_provenance}"
)
self.assertMultiLineEqual(
expected_table, actual_table,
f"expected from {expected_provenance}; actual from {actual_provenance}"
)
results.setdefault(frozenset(), Result("", "", "hardcoded initial state"))
check_invariants("initial state")
# In the order specified by ctor_order, run registrations
set_to_report = frozenset(range(len(ops)))
for i, op_ix in enumerate(ctor_order):
# It would be better to DEF here, but because we manage
# lifetime of multiple registrations with multiple Library
# references (refs), we can't deal with the strict checking
# from DEF.
refs[op_ix] = C._dispatch_library("FRAGMENT", test_namespace, "")
active_ops.add(op_ix)
try:
ops[op_ix](refs[op_ix])
check_invariants(f"running ctors {ctor_order[:i + 1]}")
except RuntimeError as e:
if not expect_raises:
raise
actual = str(e).replace(test_namespace, "test")
actual = actual.split("\nException raised from ")[0]
expected, _, expected_provenance = results.setdefault(
frozenset(active_ops),
Result(actual, "", f"error after running ctors {ctor_order[:i + 1]}")
)
self.assertMultiLineEqual(expected, actual, expected_provenance)
set_to_report = frozenset(active_ops)
active_ops.remove(op_ix)
# NB: this finally test asserts that if a registrations fails,
# the dispatcher is left in the same state *that it was before*!
check_invariants(
f"running ctors {ctor_order[:i]} and then failing to run ctor {op_ix} "
"(did this failure leave the dispatcher in a wedged state? "
"it shouldn't!)"
)
break
last_ctor = i
if expect_raises and len(active_ops) == len(ops):
# Destroy references first, as some test frameworks (like pytest)
# will retain references in the exception raised by assertTrue! EW!
refs = None
self.assertTrue(
False,
"expected exception to be raised, but nothing was raised "
f"(after running ctors {ctor_order})")
# In the order specified by dtor_order, run deregistrations
for i, op_ix in enumerate(dtor_order):
# Trigger a destruction
refs[op_ix] = None
# discard not remove, since we may not have actually deregistered
# anything if there was an error raised
if expect_raises:
active_ops.discard(op_ix)
else:
active_ops.remove(op_ix)
check_invariants(
f"running ctors {ctor_order[:last_ctor + 1]}, then running dtors {dtor_order[:i + 1]}"
)
return results[set_to_report][0]
# Operator registrations are commutative (as static initializers can
# run in any order) and invertible (by deregistration). (Subject
# to some caveats: some legacy behavior in the system are not commutative--
# we want to get rid of these!)
#
# So while in principle we could simply test a set of operations
# by just running them one by one in the order specified by the user,
# we can get more assurance about these extra properties by doing
# more work:
#
# 1. Don't run the registrations once in a fixed order: run every possible
# permutation. Similarly, run every permutation of deregistration order.
#
# 2. Don't just check the end state of the dispatcher: for every
# subset of operator registrations, ensure that the computed
# intermediate state is path independent. One thing to note:
# in this function, we assume each operation is unique. In general,
# there may be duplicated registrations, but these are usually
# idempotent or legacy. We test for behavior here separately.
#
# NB: checking all permutations means this function is exponential in
# the length of ops! So don't pass too many ops to this function!
def commute(self, name, ops, ctor_order=None, expect_raises=False):
results = {}
def go(ctor_order):
for dtor_order in itertools.permutations(range(len(ops))):
self.run_ops(
name, ops, ctor_order, dtor_order,
results=results, expect_raises=expect_raises)
if ctor_order is not None:
go(ctor_order)
else:
for ctor_order in itertools.permutations(range(len(ops))):
go(ctor_order)
# Return the "full" Result namedtuple after all operations are run.
# If this KeyErrors, that means that there did not exist any
# ordering of ctors which got us to the "end". That's an
# error in test construction: it means you could have
# factored the test into two smaller ones.
return results[frozenset(range(len(ops)))]
def test_def(self):
state = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("test_def", [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo"),
# m.impl("test_def", kCPU, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", dispatch="CPU"),
# m.impl("test_def", kAutograd, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", dispatch="Autograd"),
# m.impl("test_def", kAutogradCPU, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", dispatch="AutogradCPU")
]).state
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
AutogradCPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
def test_def_impl_schema_mismatch(self):
# NB: an impl-impl mismatch is not reported eagerly; you'll find out
# about it because one of them won't match with def
state = self.commute("foo", [
# m.def("foo(Tensor x, Tensor y) -> Tensor")
lambda m: m.def_("foo(Tensor x, Tensor y) -> Tensor"),
# m.impl("foo", [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo"),
], expect_raises=True).state
self.assertExpectedInline(state, '''\
Inferred operator schema for a C++ kernel function doesn't match the expected function schema.
operator: test::foo
expected schema: test::foo(Tensor x, Tensor y) -> Tensor
registered at /dev/null:0
inferred schema: (Tensor _0) -> Tensor _0
impl_t_t
reason: The number of arguments is different. 2 vs 1.''')
def test_def_with_inference(self):
state = self.commute("foo", [
# m.def("foo", [](const Tensor & x) { return x })
lambda m: m.def_name_t_t("foo"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd"),
# m.impl("foo", torch::kAutogradCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "AutogradCPU")
]).state
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor _0) -> Tensor _0
debug: registered at /dev/null:0
alias analysis kind: CONSERVATIVE
CPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
AutogradCPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: default_def_name_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
def test_def_only(self):
state = self.commute("foo", [
# m.def("foo(Tensor x, Tensor y) -> Tensor")
lambda m: m.def_("foo(Tensor x, Tensor y) -> Tensor"),
]).state
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x, Tensor y) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
''')
def test_impl_only(self):
state = self.commute("foo", [
# m.impl("foo", [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo"),
# m.impl("foo", torch::kCPU, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", "CPU"),
# m.impl("foo", torch::kAutograd, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", "Autograd"),
# m.impl("foo", torch::kAutogradCPU, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", "AutogradCPU")
]).state
self.assertExpectedInline(state, '''\
name: test::foo
schema: (none)
CPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
AutogradCPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
def test_computed_table(self):
result = self.commute("foo", [
# m.def("foo", [](const Tensor & x) { return x })
lambda m: m.def_name_t_t("foo"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kCUDA, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "XLA", debug="fn_xla"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd", debug="fn_autograd"),
# m.impl("foo", torch::kAutogradCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "AutogradCPU", debug="fn_autogradcpu")
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor _0) -> Tensor _0
debug: registered at /dev/null:0
alias analysis kind: CONSERVATIVE
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
XLA: fn_xla :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
AutogradCPU: fn_autogradcpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: fn_autograd :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: default_def_name_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: default_def_name_t_t [math kernel]
CPU: fn_cpu [kernel]
CUDA: default_def_name_t_t [math kernel]
XLA: fn_xla [kernel]
AutogradOther: default_def_name_t_t [math kernel]
AutogradCPU: fn_autogradcpu [kernel]
AutogradCUDA: default_def_name_t_t [math kernel]
AutogradXLA: fn_autograd [autograd kernel]
''')
def test_computed_table_with_cpu_math_autogradcpu_fallthrough(self):
global_m = C._dispatch_library("IMPL", "_", "AutogradCPU")
result = self.commute("foo", [
# m.def("foo", [](const Tensor & x) { return x })
lambda m: m.def_name_t_t("foo"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor _0) -> Tensor _0
debug: registered at /dev/null:0
alias analysis kind: CONSERVATIVE
CPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: default_def_name_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: default_def_name_t_t [math kernel]
CPU: impl_t_t [kernel]
CUDA: default_def_name_t_t [math kernel]
XLA: default_def_name_t_t [math kernel]
AutogradOther: default_def_name_t_t [math kernel]
AutogradCPU: registered in pytorch framework [backend fallback]
AutogradCUDA: default_def_name_t_t [math kernel]
AutogradXLA: default_def_name_t_t [math kernel]
''')
def test_computed_table_with_math(self):
global_m = C._dispatch_library("IMPL", "_", "AutogradCPU")
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCompositeImplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeImplicitAutograd"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CompositeImplicitAutograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: impl_t_t [math kernel]
CPU: impl_t_t [math kernel]
CUDA: impl_t_t [math kernel]
XLA: impl_t_t [math kernel]
AutogradOther: impl_t_t [math kernel]
AutogradCPU: impl_t_t [math kernel]
AutogradCUDA: impl_t_t [math kernel]
AutogradXLA: impl_t_t [math kernel]
''')
def test_computed_table_with_cpu_math(self):
global_m = C._dispatch_library("IMPL", "_", "AutogradCPU")
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kCompositeImplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeImplicitAutograd", debug="fn_math"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: fn_math :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_math [math kernel]
CPU: fn_cpu [kernel]
CUDA: fn_math [math kernel]
XLA: fn_math [math kernel]
AutogradOther: fn_math [math kernel]
AutogradCPU: registered in pytorch framework [backend fallback]
AutogradCUDA: fn_math [math kernel]
AutogradXLA: fn_math [math kernel]
''')
def test_computed_table_with_autograd(self):
global_m = C._dispatch_library("IMPL", "_", "AutogradCPU")
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
Autograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
AutogradOther: impl_t_t [autograd kernel]
AutogradCPU: impl_t_t [autograd kernel]
AutogradCUDA: impl_t_t [autograd kernel]
AutogradXLA: impl_t_t [autograd kernel]
''')
# Now that catchAll maps to CompositeImplicitAutograd, registering to both
# catchAll and CompositeImplicitAutograd breaks commutativity.
def test_computed_table_with_cpu_autograd_math(self):
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd", debug="fn_autograd"),
# m.impl("foo", torch::kCompositeImplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeImplicitAutograd", debug="fn_math"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: fn_autograd :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: fn_math :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_math [math kernel]
CPU: fn_cpu [kernel]
CUDA: fn_math [math kernel]
XLA: fn_math [math kernel]
AutogradOther: fn_math [math kernel]
AutogradCPU: fn_autograd [autograd kernel]
AutogradCUDA: fn_math [math kernel]
AutogradXLA: fn_math [math kernel]
''')
def test_computed_table_with_ambiguous_autogradother(self):
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCompositeImplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeImplicitAutograd", debug="fn_math"),
# m.impl("foo", torch::kFPGA, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "FPGA", debug="fn_fpga"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
FPGA: fn_fpga :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: fn_math :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check + ('FPGA',))
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_math [math kernel]
CPU: fn_math [math kernel]
CUDA: fn_math [math kernel]
XLA: fn_math [math kernel]
AutogradOther: ambiguous_autogradother [ambiguous autogradother]
AutogradCPU: fn_math [math kernel]
AutogradCUDA: fn_math [math kernel]
AutogradXLA: fn_math [math kernel]
FPGA: fn_fpga [kernel]
''')
def test_computed_table_with_cpu_defaultbackend(self):
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kCompositeExplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeExplicitAutograd", debug="fn_defaultbackend"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeExplicitAutograd[alias]: fn_defaultbackend :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_defaultbackend [default backend kernel]
CPU: fn_cpu [kernel]
CUDA: fn_defaultbackend [default backend kernel]
XLA: fn_defaultbackend [default backend kernel]
AutogradOther: registered in pytorch framework [backend fallback]
AutogradCPU: registered in pytorch framework [backend fallback]
AutogradCUDA: registered in pytorch framework [backend fallback]
AutogradXLA: registered in pytorch framework [backend fallback]
''')
def test_computed_table_with_cpu_autograd_defaultbackend(self):
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd", debug="fn_autograd"),
# m.impl("foo", torch::kCompositeExplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeExplicitAutograd", debug="fn_defaultbackend"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: fn_autograd :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeExplicitAutograd[alias]: fn_defaultbackend :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check + ('FPGA',))
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_defaultbackend [default backend kernel]
CPU: fn_cpu [kernel]
CUDA: fn_defaultbackend [default backend kernel]
XLA: fn_defaultbackend [default backend kernel]
AutogradOther: fn_autograd [autograd kernel]
AutogradCPU: fn_autograd [autograd kernel]
AutogradCUDA: fn_autograd [autograd kernel]
AutogradXLA: fn_autograd [autograd kernel]
FPGA: fn_defaultbackend [default backend kernel]
''')
def test_computed_table_with_cpu_autograd_math_defaultbackend(self):
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd", debug="fn_autograd"),
# m.impl("foo", torch::kCompositeImplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeImplicitAutograd", debug="fn_math"),
# m.impl("foo", torch::kCompositeExplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeExplicitAutograd", debug="fn_defaultbackend"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: fn_autograd :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: fn_math :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeExplicitAutograd[alias]: fn_defaultbackend :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_defaultbackend [default backend kernel]
CPU: fn_cpu [kernel]
CUDA: fn_defaultbackend [default backend kernel]
XLA: fn_defaultbackend [default backend kernel]
AutogradOther: fn_autograd [autograd kernel]
AutogradCPU: fn_autograd [autograd kernel]
AutogradCUDA: fn_autograd [autograd kernel]
AutogradXLA: fn_autograd [autograd kernel]
''')
def test_multiple_def_error(self):
ops = [
# m.def("foo(Tensor x, Tensor y) -> Tensor")
lambda m: m.def_("foo(Tensor x, Tensor y) -> Tensor"),
# m.def("foo(Tensor x, Tensor y) -> Tensor")
lambda m: m.def_("foo(Tensor x, Tensor y) -> Tensor"),
]
self.assertExpectedInline(
self.commute("foo", ops, expect_raises=True).state,
'''Tried to register an operator (test::foo(Tensor x, Tensor y) -> Tensor) with the same name and overload '''
'''name multiple times. Each overload's schema should only be registered with a single call to def(). '''
'''Duplicate registration: registered at /dev/null:0. Original registration: registered at /dev/null:0'''
)
def test_def_with_explicit_alias(self):
state = self.commute("foo", [
# m.def(torch::schema(
# "foo(Tensor x, Tensor y) -> Tensor",
# AliasAnalysisKind::PURE))
lambda m: m.def_("foo(Tensor x, Tensor y) -> Tensor",
alias="PURE_FUNCTION")
]).state
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x, Tensor y) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: PURE_FUNCTION
''')
def test_multiple_def_alias_defaulting(self):
ops = [
# m.def(torch::schema("foo(Tensor x) -> Tensor",
# c10::AliasAnalysisKind::PURE_FUNCTION))
lambda m: m.def_("foo(Tensor x) -> Tensor", alias="PURE_FUNCTION"),
# RegisterOperators().op("foo(Tensor x) -> Tensor")
lambda m: m.def_legacy("foo(Tensor x) -> Tensor"),
]
self.assertExpectedInline(
self.commute("foo", ops, expect_raises=True).state,
'''Tried to register an operator (test::foo(Tensor x) -> Tensor) with the same name and overload '''
'''name multiple times. Each overload's schema should only be registered with a single call to def(). '''
'''Duplicate registration: registered at /dev/null:0. Original registration: registered at /dev/null:0'''
)
def test_multiple_def_alias_mismatch(self):
ops = [
# m.def(torch::schema("foo(Tensor x) -> Tensor",
# c10::AliasAnalysisKind::PURE_FUNCTION))
lambda m: m.def_("foo(Tensor x) -> Tensor", alias="PURE_FUNCTION"),
# m.def(torch::schema("foo(Tensor x) -> Tensor",
# c10::AliasAnalysisKind::CONSERVATIVE))
lambda m: m.def_("foo(Tensor x) -> Tensor", alias="CONSERVATIVE"),
]
self.assertExpectedInline(
self.commute("foo", ops, expect_raises=True).state,
'''Tried to register an operator (test::foo(Tensor x) -> Tensor) with the same name and overload '''
'''name multiple times. Each overload's schema should only be registered with a single call to def(). '''
'''Duplicate registration: registered at /dev/null:0. Original registration: registered at /dev/null:0'''
)
def test_multiple_fallback(self):
global_m = C._dispatch_library("IMPL", "_", "XLA")
global_m.fallback_fallthrough(),
try:
global_m.fallback_fallthrough(),
except RuntimeError as e:
self.assertExpectedInline(
str(e),
'''Tried to register multiple backend fallbacks for the same dispatch key XLA; previous registration '''
'''registered at /dev/null:0, new registration registered at /dev/null:0'''
)
else:
self.assertTrue(False)
def test_overwrite_math(self):
ops = [
lambda m: m.impl_t_t("foo", debug="fn1"),
lambda m: m.impl_t_t("foo", debug="fn2"),
]
# Not commutative
self.assertExpectedInline(
self.commute("foo", ops, ctor_order=(0, 1)).state,
'''\
name: test::foo
schema: (none)
CompositeImplicitAutograd[alias]: fn2 :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias] (inactive): fn1 :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
'''
)
# Definition: a dangling impl happens when someone does an impl() on a
# function but not a def() for it. This is usually a bug, e.g. someone
# misspelled an operator name, or someone registered an impl for an op that
# no longer exists
def test_find_dangling_impls(self):
dangling_impls = C._dispatch_find_dangling_impls()
self.assertEqual(
0,
len(dangling_impls),
msg=f"Expect zero dangling impls, but found: {dangling_impls}"
)
def test_find_dangling_impls_ext(self):
extension_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'cpp_extensions', 'dangling_impl_extension.cpp')
module = torch.utils.cpp_extension.load(
name="dangling_impl_extension",
sources=[
extension_path,
],
extra_cflags=["-g"],
verbose=True,
)
impls = C._dispatch_find_dangling_impls()
self.assertEqual(1, len(impls))
self.assertEqual(
f'''\
name: __test::foo
schema: (none)
CPU: registered at {extension_path}:5 :: () -> () [ boxed unboxed ]
''',
impls[0])
def test_dispatch_print_registrations_for_dispatch_key_invalid(self):
with self.assertRaisesRegex(
RuntimeError,
"could not parse dispatch key: invalid_key"):
C._dispatch_print_registrations_for_dispatch_key('invalid_key')
class TestPythonDispatcher(TestCase):
def test_basic(self):
dispatcher = PythonDispatcher()
dispatcher.register(["CPU", "XLA", "Lazy", "CompositeImplicitAutograd"])
self.assertExpectedInline(
dispatcher.dispatchTable(),
'''\
Computed Dispatch Table
key kernel
---------------------------
CPU fn_CPU [kernel]
XLA fn_XLA [kernel]
Lazy fn_Lazy [kernel]
FPGA fn_CompositeImplicitAutograd [math kernel]
AutogradOther fn_CompositeImplicitAutograd [math kernel]
AutogradCPU [backend fallback]
AutogradXLA [backend fallback]
AutogradLazy [backend fallback]
'''
)
def test_math_autogradcpu(self):
dispatcher = PythonDispatcher()
dispatcher.register(["CPU", "XLA", "Lazy", "CompositeImplicitAutograd", "AutogradCPU"])
self.assertExpectedInline(
dispatcher.dispatchTable(),
'''\
Computed Dispatch Table
key kernel
---------------------------
CPU fn_CPU [kernel]
XLA fn_XLA [kernel]
Lazy fn_Lazy [kernel]
FPGA fn_CompositeImplicitAutograd [math kernel]
AutogradOther fn_CompositeImplicitAutograd [math kernel]
AutogradCPU fn_AutogradCPU [kernel]
AutogradXLA [backend fallback]
AutogradLazy [backend fallback]
'''
)
self.assertExpectedInline(
dispatcher.registrations(),
'''\
Registered Kernels
key kernel
---------------------------
CPU fn_CPU
XLA fn_XLA
Lazy fn_Lazy
AutogradCPU fn_AutogradCPU
CompositeImplicitAutograd[alias] fn_CompositeImplicitAutograd
'''
)
def test_defaultbackend_autogradcpu(self):
dispatcher = PythonDispatcher()
dispatcher.register(["CPU", "XLA", "Lazy", "CompositeExplicitAutograd", "AutogradCPU"])
self.assertExpectedInline(
dispatcher.dispatchTable(),
'''\
Computed Dispatch Table
key kernel
---------------------------
CPU fn_CPU [kernel]
XLA fn_XLA [kernel]
Lazy fn_Lazy [kernel]
FPGA fn_CompositeExplicitAutograd [default backend kernel]
AutogradOther [backend fallback]
AutogradCPU fn_AutogradCPU [kernel]
AutogradXLA [backend fallback]
AutogradLazy [backend fallback]
'''
)
self.assertExpectedInline(
dispatcher.registrations(),
'''\
Registered Kernels
key kernel
---------------------------
CPU fn_CPU
XLA fn_XLA
Lazy fn_Lazy
AutogradCPU fn_AutogradCPU
CompositeExplicitAutograd[alias] fn_CompositeExplicitAutograd
'''
)
def test_autogradother(self):
dispatcher = PythonDispatcher()
dispatcher.register(["CPU", "FPGA", "CompositeImplicitAutograd"])
self.assertExpectedInline(
dispatcher.dispatchTable(),
'''\
Computed Dispatch Table
key kernel
---------------------------
CPU fn_CPU [kernel]
XLA fn_CompositeImplicitAutograd [math kernel]
Lazy fn_CompositeImplicitAutograd [math kernel]
FPGA fn_FPGA [kernel]
AutogradOther ambiguous_autogradother [ambiguous autogradother]
AutogradCPU [backend fallback]
AutogradXLA fn_CompositeImplicitAutograd [math kernel]
AutogradLazy fn_CompositeImplicitAutograd [math kernel]
'''
)
self.assertExpectedInline(
dispatcher.registrations(),
'''\
Registered Kernels
key kernel
---------------------------
FPGA fn_FPGA
CPU fn_CPU
CompositeImplicitAutograd[alias] fn_CompositeImplicitAutograd
'''
)
def test_duplicate_registrations(self):
dispatcher = PythonDispatcher()
with self.assertRaisesRegex(RuntimeError, r"Overriden is not allowed"):
dispatcher.register(["CPU", "CPU"])
def test_defaultbackend_math(self):
dispatcher = PythonDispatcher()
with self.assertRaisesRegex(
RuntimeError,
r"Registration to both CompositeImplicitAutograd and CompositeExplicitAutograd is not allowed"):
dispatcher.register(["CompositeExplicitAutograd", "CompositeImplicitAutograd"])
def test_quantized_structured_not_implemented(self):
x = torch.zeros([1, 1, 1])
y = torch.zeros([1, 1, 1])
scale, zero_point = 1.0, 0
dtype = torch.qint8
qx = torch.quantize_per_tensor(x, scale, zero_point, dtype)
qy = torch.quantize_per_tensor(y, scale, zero_point, dtype)
# If bmm gets quantized support you need to update this to something
# else that is not implemented
self.assertRaisesRegex(
NotImplementedError,
"Could not run 'aten::bmm.out' with arguments from the 'QuantizedCPU' backend.",
lambda: torch.bmm(qx, qy)
)
if __name__ == '__main__':
run_tests()