forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mkl_test_util.py
44 lines (28 loc) · 1.12 KB
/
mkl_test_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
## @package mkl_test_util
# Module caffe2.python.mkl_test_util
"""
The MKL test utils is a small addition on top of the hypothesis test utils
under caffe2/python, which allows one to more easily test MKL related
operators.
"""
import hypothesis.strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import workspace
from caffe2.python import hypothesis_test_util as hu
cpu_do = hu.cpu_do
gpu_do = hu.gpu_do
mkl_do = caffe2_pb2.DeviceOption(device_type=caffe2_pb2.MKLDNN)
device_options = hu.device_options + (
[mkl_do] if workspace.C.has_mkldnn else [])
def device_checker_device_options():
return st.just(device_options)
def gradient_checker_device_option():
return st.sampled_from(device_options)
gcs = dict(
gc=gradient_checker_device_option(),
dc=device_checker_device_options()
)
gcs_cpu_only = dict(gc=st.sampled_from([cpu_do]), dc=st.just([cpu_do]))
gcs_gpu_only = dict(gc=st.sampled_from([gpu_do]), dc=st.just([gpu_do]))
gcs_mkl_only = dict(gc=st.sampled_from([mkl_do]), dc=st.just([mkl_do]))
gcs_cpu_mkl = dict(gc=st.sampled_from([cpu_do, mkl_do]), dc=st.just([cpu_do, mkl_do]))