forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_import_c_extension.pyi
227 lines (182 loc) · 5.78 KB
/
_import_c_extension.pyi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import collections
from typing import Any, Dict, List, Optional, Protocol, Tuple, Union, overload
from typing_extensions import TypeAlias
import numpy as np
import google.protobuf.message
import torch
from caffe2.proto import caffe2_pb2
from . import core
# pybind11 will automatically accept either Python str or bytes for C++ APIs
# that accept std::string.
_PybindStr: TypeAlias = Union[str, bytes]
_PerOpEnginePrefType: TypeAlias = Dict[int, Dict[str, List[str]]]
_EnginePrefType: TypeAlias = Dict[int, List[str]]
Int8Tensor = collections.namedtuple(
'Int8Tensor', ['data', 'scale', 'zero_point']
)
class _HasProto(Protocol):
def Proto(self) -> Any: ...
class TensorCPU:
def init(self, dims: List[int], caffe_type: int) -> None: ...
def to_torch(self) -> torch.Tensor: ...
class Blob:
def feed(
self,
arg: Any,
device_option: Union[
None, str, bytes, google.protobuf.message.Message, _HasProto,
] = None,
) -> bool: ...
def is_tensor(self) -> bool: ...
def as_tensor(self) -> TensorCPU: ...
def tensor(self) -> TensorCPU: ...
def to_torch(self) -> torch.Tensor: ...
def fetch(self) -> Any: ...
class Net:
def run(self) -> None: ...
def cancel(self) -> None: ...
class Workspace:
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, workspace: Workspace) -> None: ...
@property
def blobs(self) -> Dict[str, Blob]: ...
def create_blob(self, name: _PybindStr) -> Blob: ...
def fetch_blob(self, name: _PybindStr) -> Any: ...
def fetch_int8_blob(
self, name: Union[str, bytes, core.BlobReference]
) -> Int8Tensor: ...
def _create_net(self, _def: bytes, overwrite: bool) -> Net: ...
def create_net(
self,
net: Union[str, bytes, core.Net, caffe2_pb2.NetDef],
overwrite: bool = False,
) -> Net: ...
def _run_net(self, _def: bytes) -> None: ...
def _run_operator(self, _def: bytes) -> None: ...
def _run_plan(self, _def: bytes) -> None: ...
def run(
self,
obj: Union[
caffe2_pb2.PlanDef,
caffe2_pb2.NetDef,
caffe2_pb2.OperatorDef,
_HasProto,
],
) -> None: ...
def feed_blob(
self,
name: Union[str, bytes, core.BlobReference],
arr: Union[caffe2_pb2.TensorProto, np.ndarray],
device_option: Optional[caffe2_pb2.DeviceOption] = None,
) -> bool: ...
def remove_blob(self, blob: Any) -> None: ...
current: Workspace
class Argument:
@property
def name(self) -> str: ...
@property
def description(self) -> str: ...
@property
def required(self) -> bool: ...
class OpSchema:
@staticmethod
def get(key: str) -> OpSchema: ...
@property
def args(self) -> List[Argument]: ...
@property
def input_desc(self) -> List[Tuple[str, str]]: ...
@property
def output_desc(self) -> List[Tuple[str, str]]: ...
@property
def max_input(self) -> int: ...
@property
def max_output(self) -> int: ...
@property
def min_input(self) -> int: ...
@property
def min_output(self) -> int: ...
def inplace_enforced(self, x: int, y: int) -> bool: ...
class DummyName:
...
class Graph:
...
class Node:
...
class Edge:
...
class NeuralNetOperator:
...
class NeuralNetData:
...
class NNSubgraph:
...
class NNMatchGraph:
...
class Annotation:
...
is_asan: bool
has_mkldnn: bool
use_mkldnn: bool
has_fbgemm: bool
use_rocm: bool
use_trt: bool
define_caffe2_no_operator_schema: bool
def registered_dbs() -> List[str]: ...
def get_build_options() -> Dict[str, str]: ...
def set_per_op_engine_pref(pref: _PerOpEnginePrefType) -> None: ...
def set_global_engine_pref(pref: _EnginePrefType) -> None: ...
def set_engine_pref(
per_op_pref: _PerOpEnginePrefType, global_pref: _EnginePrefType
) -> None: ...
def set_op_engine_pref(
op_type: _PybindStr, op_pref: _EnginePrefType
) -> None: ...
def op_registry_key(op_type: _PybindStr, engine: _PybindStr) -> str: ...
def global_init(args: List[str]) -> None: ...
def registered_operators() -> List[str]: ...
def on_module_exit() -> None: ...
@overload
def switch_workspace(ws: Workspace): ...
@overload
def switch_workspace(name: _PybindStr, create_if_missing: Optional[bool] = None): ...
def create_child_workspace(
parent_ws_name: _PybindStr, child_ws_name: _PybindStr
) -> None: ...
def root_folder() -> str: ...
def current_workspace() -> str: ...
def workspaces() -> List[str]: ...
def benchmark_net(
name: _PybindStr, warmup_runs: int, main_runs: int, run_individual: bool
) -> List[float]: ...
def benchmark_net_once(name: _PybindStr) -> float: ...
def blobs() -> Dict[str, Blob]: ...
def has_blob(name: _PybindStr) -> bool: ...
def create_blob(name: _PybindStr) -> bool: ...
def reset_blob(name: _PybindStr) -> None: ...
@overload
def deserialize_blob(content: _PybindStr) -> Blob: ...
@overload
def deserialize_blob(name: _PybindStr, serialized: bytes) -> None: ...
def serialize_blob(name: _PybindStr) -> bytes: ...
def get_stats() -> Dict[str, int]: ...
def is_numa_enabled() -> bool: ...
def get_num_numa_nodes() -> int: ...
def get_blob_numa_node(blob_name: _PybindStr) -> int: ...
def get_blob_size_bytes(blob_name: _PybindStr) -> int: ...
def create_offline_tensor(
name: _PybindStr, dims: List[int], datatype: int
) -> bool: ...
def fakeFp16FuseOps(net_str: bytes) -> bytes: ...
def num_cuda_devices() -> int: ...
def get_cuda_version() -> int: ...
def get_cudnn_version() -> int: ...
def get_gpu_memory_info(device_id: int) -> Tuple[int, int]: ...
def get_device_properties(deviceid: int) -> Dict[str, Any]: ...
def num_hip_devices() -> int: ...
def get_hip_version() -> int: ...
def get_miopen_version() -> int: ...
has_hip_support: bool
has_cuda_support: bool
has_gpu_support: bool