forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net_simple.h
96 lines (78 loc) · 2.54 KB
/
net_simple.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#ifndef CAFFE2_CORE_NET_SIMPLE_H_
#define CAFFE2_CORE_NET_SIMPLE_H_
#include <vector>
#include "c10/util/Registry.h"
#include "caffe2/core/common.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2_pb.h"
namespace caffe2 {
struct IndividualMetrics {
public:
explicit IndividualMetrics(const std::vector<OperatorBase*>& operators)
: main_runs_(0), operators_(operators) {
const auto num_ops = operators_.size();
time_per_op.resize(num_ops, 0.0);
}
// run ops while collecting profiling results
void RunOpsWithProfiling();
// print out profiling results
void PrintOperatorProfilingResults();
const vector<float>& GetTimePerOp() {
return time_per_op;
}
float setup_time{0.0};
float memory_alloc_time{0.0};
float memory_dealloc_time{0.0};
float output_dealloc_time{0.0};
private:
int main_runs_;
const std::vector<OperatorBase*>& operators_;
vector<float> time_per_op;
vector<uint64_t> flops_per_op;
vector<uint64_t> memory_bytes_read_per_op;
vector<uint64_t> memory_bytes_written_per_op;
vector<uint64_t> param_bytes_per_op;
CaffeMap<string, int> num_ops_per_op_type_;
CaffeMap<string, float> time_per_op_type;
CaffeMap<string, float> flops_per_op_type;
CaffeMap<string, float> memory_bytes_read_per_op_type;
CaffeMap<string, float> memory_bytes_written_per_op_type;
CaffeMap<string, float> param_bytes_per_op_type;
};
// This is the very basic structure you need to run a network - all it
// does is simply to run everything in sequence. If you want more fancy control
// such as a DAG-like execution, check out other better net implementations.
class TORCH_API SimpleNet : public NetBase {
public:
SimpleNet(const std::shared_ptr<const NetDef>& net_def, Workspace* ws);
bool SupportsAsync() override {
return false;
}
vector<float> TEST_Benchmark(
const int warmup_runs,
const int main_runs,
const bool run_individual) override;
/*
* This returns a list of pointers to objects stored in unique_ptrs.
* Used by Observers.
*
* Think carefully before using.
*/
vector<OperatorBase*> GetOperators() const override {
vector<OperatorBase*> op_list;
for (auto& op : operators_) {
op_list.push_back(op.get());
}
return op_list;
}
protected:
bool Run() override;
bool RunAsync() override;
vector<unique_ptr<OperatorBase>> operators_;
C10_DISABLE_COPY_AND_ASSIGN(SimpleNet);
};
} // namespace caffe2
#endif // CAFFE2_CORE_NET_SIMPLE_H_