-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlayers.py
1122 lines (864 loc) · 43.4 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from builtins import range
import numpy as np
def affine_forward(x, w, b):
"""
Computes the forward pass for an affine (fully-connected) layer.
The input x has shape (N, d_1, ..., d_k) and contains a minibatch of N
examples, where each example x[i] has shape (d_1, ..., d_k). We will
reshape each input into a vector of dimension D = d_1 * ... * d_k, and
then transform it to an output vector of dimension M.
Inputs:
- x: A numpy array containing input data, of shape (N, d_1, ..., d_k)
- w: A numpy array of weights, of shape (D, M)
- b: A numpy array of biases, of shape (M,)
Returns a tuple of:
- out: output, of shape (N, M)
- cache: (x, w, b)
"""
out = None
###########################################################################
# TODO: Implement the affine forward pass. Store the result in out. You #
# will need to reshape the input into rows. #
###########################################################################
num_train = x.shape[0]
out = np.dot(x.reshape(num_train, -1), w)+ b
###########################################################################
# END OF YOUR CODE #
###########################################################################
cache = (x, w, b)
return out, cache
def affine_backward(dout, cache):
"""
Computes the backward pass for an affine layer.
Inputs:
- dout: Upstream derivative, of shape (N, M)
- cache: Tuple of:
- x: Input data, of shape (N, d_1, ... d_k)
- w: Weights, of shape (D, M)
- b: Biases, of shape (M,)
Returns a tuple of:
- dx: Gradient with respect to x, of shape (N, d1, ..., d_k)
- dw: Gradient with respect to w, of shape (D, M)
- db: Gradient with respect to b, of shape (M,)
"""
x, w, b = cache
num_train = x.shape[0]
dx, dw, db = None, None, None
###########################################################################
# TODO: Implement the affine backward pass. #
###########################################################################
dx = np.dot(dout, w.T).reshape(*x.shape)
dw = np.dot(x.reshape(num_train, -1).T, dout)
db = np.sum(dout, axis=0) # Along num examples
###########################################################################
# END OF YOUR CODE #
###########################################################################
return dx, dw, db
def relu_forward(x):
"""
Computes the forward pass for a layer of rectified linear units (ReLUs).
Input:
- x: Inputs, of any shape
Returns a tuple of:
- out: Output, of the same shape as x
- cache: x
"""
out = None
###########################################################################
# TODO: Implement the ReLU forward pass. #
###########################################################################
out = np.maximum(0, x)
###########################################################################
# END OF YOUR CODE #
###########################################################################
cache = x
return out, cache
def relu_backward(dout, cache):
"""
Computes the backward pass for a layer of rectified linear units (ReLUs).
Input:
- dout: Upstream derivatives, of any shape
- cache: Input x, of same shape as dout
Returns:
- dx: Gradient with respect to x
"""
dx, x = None, cache
###########################################################################
# TODO: Implement the ReLU backward pass. #
###########################################################################
dx = np.zeros(x.shape)
dx[x>0] = 1
dx = dout * dx
###########################################################################
# END OF YOUR CODE #
###########################################################################
return dx
def batchnorm_forward(x, gamma, beta, bn_param):
"""
Forward pass for batch normalization.
During training the sample mean and (uncorrected) sample variance are
computed from minibatch statistics and used to normalize the incoming data.
During training we also keep an exponentially decaying running mean of the
mean and variance of each feature, and these averages are used to normalize
data at test-time.
At each timestep we update the running averages for mean and variance using
an exponential decay based on the momentum parameter:
running_mean = momentum * running_mean + (1 - momentum) * sample_mean
running_var = momentum * running_var + (1 - momentum) * sample_var
Note that the batch normalization paper suggests a different test-time
behavior: they compute sample mean and variance for each feature using a
large number of training images rather than using a running average. For
this implementation we have chosen to use running averages instead since
they do not require an additional estimation step; the torch7
implementation of batch normalization also uses running averages.
Input:
- x: Data of shape (N, D)
- gamma: Scale parameter of shape (D,)
- beta: Shift paremeter of shape (D,)
- bn_param: Dictionary with the following keys:
- mode: 'train' or 'test'; required
- eps: Constant for numeric stability
- momentum: Constant for running mean / variance.
- running_mean: Array of shape (D,) giving running mean of features
- running_var Array of shape (D,) giving running variance of features
Returns a tuple of:
- out: of shape (N, D)
- cache: A tuple of values needed in the backward pass
"""
mode = bn_param['mode']
eps = bn_param.get('eps', 1e-5)
momentum = bn_param.get('momentum', 0.9)
N, D = x.shape
running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))
out, cache = None, None
if mode == 'train':
#######################################################################
# TODO: Implement the training-time forward pass for batch norm. #
# Use minibatch statistics to compute the mean and variance, use #
# these statistics to normalize the incoming data, and scale and #
# shift the normalized data using gamma and beta. #
# #
# You should store the output in the variable out. Any intermediates #
# that you need for the backward pass should be stored in the cache #
# variable. #
# #
# You should also use your computed sample mean and variance together #
# with the momentum variable to update the running mean and running #
# variance, storing your result in the running_mean and running_var #
# variables. #
# #
# Note that though you should be keeping track of the running #
# variance, you should normalize the data based on the standard #
# deviation (square root of variance) instead! #
# Referencing the original paper (https://arxiv.org/abs/1502.03167) #
# might prove to be helpful. #
#######################################################################
sample_mean = np.mean(x, axis=0)
sample_var = np.mean((x - sample_mean)**2, axis=0)
norm_data = (x - sample_mean)/np.sqrt(sample_var + eps)
out = norm_data * gamma + beta
running_mean = momentum * running_mean + (1 - momentum) * sample_mean
running_var = momentum * running_var + (1 - momentum) * sample_var
#######################################################################
# END OF YOUR CODE #
#######################################################################
elif mode == 'test':
#######################################################################
# TODO: Implement the test-time forward pass for batch normalization. #
# Use the running mean and variance to normalize the incoming data, #
# then scale and shift the normalized data using gamma and beta. #
# Store the result in the out variable. #
#######################################################################
norm_data = (x - running_mean)/np.sqrt(running_var + eps)
out = norm_data * gamma + beta
#######################################################################
# END OF YOUR CODE #
#######################################################################
else:
raise ValueError('Invalid forward batchnorm mode "%s"' % mode)
# Store the updated running means back into bn_param
bn_param['running_mean'] = running_mean
bn_param['running_var'] = running_var
cache = (x, gamma, beta, eps, norm_data)
return out, cache
def batchnorm_backward(dout, cache):
"""
Backward pass for batch normalization.
For this implementation, you should write out a computation graph for
batch normalization on paper and propagate gradients backward through
intermediate nodes.
Inputs:
- dout: Upstream derivatives, of shape (N, D)
- cache: Variable of intermediates from batchnorm_forward.
Returns a tuple of:
- dx: Gradient with respect to inputs x, of shape (N, D)
- dgamma: Gradient with respect to scale parameter gamma, of shape (D,)
- dbeta: Gradient with respect to shift parameter beta, of shape (D,)
"""
dx, dgamma, dbeta = None, None, None
###########################################################################
# TODO: Implement the backward pass for batch normalization. Store the #
# results in the dx, dgamma, and dbeta variables. #
# Referencing the original paper (https://arxiv.org/abs/1502.03167) #
# might prove to be helpful. #
###########################################################################
x, gamma, beta, eps, norm_data = cache
N, D = x.shape
sample_mean = np.mean(x, axis=0)
sample_var = np.mean((x-sample_mean)**2, axis = 0)
dgamma = np.sum((dout * norm_data), axis=0)
dbeta = np.sum(dout, axis=0)
dnorm_data = dout*gamma
# dout/dsigma2
dsample_var = np.sum((norm_data*dnorm_data), axis=0)*(-0.5)/(sample_var+eps)
# dout/dmu
dsample_mean = dsample_var * (-2) * np.mean(x - sample_mean) + np.sum(dnorm_data, axis=0)* -1/np.sqrt(sample_var+eps)
# dx = dnorm_data * (dnorm_data/dx) + dsample_mean * (dsample_mean/dx) + dsample_var * (dsample_var/dx)
# Check notes for derivation
dx = dnorm_data*1/np.sqrt(sample_var+eps) + 1/N * dsample_mean + dsample_var * 2/N * (x - sample_mean)
#print(dx)
#print('----')
###########################################################################
# END OF YOUR CODE #
###########################################################################
return dx, dgamma, dbeta
def batchnorm_backward_alt(dout, cache):
"""
Alternative backward pass for batch normalization.
For this implementation you should work out the derivatives for the batch
normalizaton backward pass on paper and simplify as much as possible. You
should be able to derive a simple expression for the backward pass.
See the jupyter notebook for more hints.
Note: This implementation should expect to receive the same cache variable
as batchnorm_backward, but might not use all of the values in the cache.
Inputs / outputs: Same as batchnorm_backward
"""
dx, dgamma, dbeta = None, None, None
###########################################################################
# TODO: Implement the backward pass for batch normalization. Store the #
# results in the dx, dgamma, and dbeta variables. #
# #
# After computing the gradient with respect to the centered inputs, you #
# should be able to compute gradients with respect to the inputs in a #
# single statement; our implementation fits on a single 80-character line.#
###########################################################################
x, gamma, beta, eps, norm_data = cache
N, D = x.shape
dgamma = np.sum((dout * norm_data), axis=0)
dbeta = np.sum(dout, axis=0)
dnorm_data = dout*gamma
sample_mean = np.mean(x, axis=0)
sample_var = np.mean((x-sample_mean)**2, axis = 0)
dx = dnorm_data * N - np.sum(dnorm_data, axis=0) - norm_data * np.sum(dnorm_data*norm_data, axis=0)
dx = 1/(N*np.sqrt(sample_var+eps)) * dx
#print(dx)
###########################################################################
# END OF YOUR CODE #
###########################################################################
return dx, dgamma, dbeta
def layernorm_forward(x, gamma, beta, ln_param):
"""
Forward pass for layer normalization.
During both training and test-time, the incoming data is normalized per data-point,
before being scaled by gamma and beta parameters identical to that of batch normalization.
Note that in contrast to batch normalization, the behavior during train and test-time for
layer normalization are identical, and we do not need to keep track of running averages
of any sort.
Input:
- x: Data of shape (N, D)
- gamma: Scale parameter of shape (D,)
- beta: Shift paremeter of shape (D,)
- ln_param: Dictionary with the following keys:
- eps: Constant for numeric stability
Returns a tuple of:
- out: of shape (N, D)
- cache: A tuple of values needed in the backward pass
"""
out, cache = None, None
eps = ln_param.get('eps', 1e-5)
###########################################################################
# TODO: Implement the training-time forward pass for layer norm. #
# Normalize the incoming data, and scale and shift the normalized data #
# using gamma and beta. #
# HINT: this can be done by slightly modifying your training-time #
# implementation of batch normalization, and inserting a line or two of #
# well-placed code. In particular, can you think of any matrix #
# transformations you could perform, that would enable you to copy over #
# the batch norm code and leave it almost unchanged? #
###########################################################################
# print("x shape:{}".format(x.shape))
# print("gamma shape:{}".format(gamma.shape))
# print("beta shape:{}".format(beta.shape))
dim_mean = np.mean(x, axis=1, keepdims=True) # N x 1.
dim_var = np.mean((x - dim_mean)**2, axis=1, keepdims=True) # (NxD - Nx1)->NxD ->keepdims ->Nx1
norm_data = (x - dim_mean)/np.sqrt(dim_var + eps)
out = norm_data * gamma + beta
# print("out shape:{}".format(out.shape))
cache = (x, gamma, beta, eps, norm_data)
###########################################################################
# END OF YOUR CODE #
###########################################################################
return out, cache
def layernorm_backward_alt(dout, cache):
"""
Backward pass for layer normalization.
For this implementation, you can heavily rely on the work you've done already
for batch normalization.
Inputs:
- dout: Upstream derivatives, of shape (N, D)
- cache: Variable of intermediates from layernorm_forward.
Returns a tuple of:
- dx: Gradient with respect to inputs x, of shape (N, D)
- dgamma: Gradient with respect to scale parameter gamma, of shape (D,)
- dbeta: Gradient with respect to shift parameter beta, of shape (D,)
"""
dx, dgamma, dbeta = None, None, None
###########################################################################
# TODO: Implement the backward pass for layer norm. #
# #
# HINT: this can be done by slightly modifying your training-time #
# implementation of batch normalization. The hints to the forward pass #
# still apply! #
###########################################################################
x, gamma, beta, eps, norm_data = cache
N, D = x.shape
dgamma = np.sum((dout * norm_data), axis=0) # (D,)
dbeta = np.sum(dout, axis=0) # (D,)
dnorm_data = dout*gamma # (NxD)
dim_mean = np.mean(x, axis=1, keepdims=True) # N x 1.
dim_var = np.mean((x - dim_mean)**2, axis=1, keepdims=True) # (NxD - Nx1)->NxD ->keepdims ->Nx1
dx = D*dnorm_data - np.sum(dnorm_data, axis=1, keepdims=True) - norm_data*np.sum(dnorm_data*norm_data, axis=1, keepdims=True)
dx = 1/(D*np.sqrt(dim_var+eps)) * dx
###########################################################################
# END OF YOUR CODE #
###########################################################################
return dx, dgamma, dbeta
def dropout_forward(x, dropout_param):
"""
Performs the forward pass for (inverted) dropout.
Inputs:
- x: Input data, of any shape
- dropout_param: A dictionary with the following keys:
- p: Dropout parameter. We keep each neuron output with probability p.
- mode: 'test' or 'train'. If the mode is train, then perform dropout;
if the mode is test, then just return the input.
- seed: Seed for the random number generator. Passing seed makes this
function deterministic, which is needed for gradient checking but not
in real networks.
Outputs:
- out: Array of the same shape as x.
- cache: tuple (dropout_param, mask). In training mode, mask is the dropout
mask that was used to multiply the input; in test mode, mask is None.
NOTE: Please implement **inverted** dropout, not the vanilla version of dropout.
See http://cs231n.github.io/neural-networks-2/#reg for more details.
NOTE 2: Keep in mind that p is the probability of **keep** a neuron
output; this might be contrary to some sources, where it is referred to
as the probability of dropping a neuron output.
"""
p, mode = dropout_param['p'], dropout_param['mode']
if 'seed' in dropout_param:
np.random.seed(dropout_param['seed'])
mask = None
out = None
if mode == 'train':
#######################################################################
# TODO: Implement training phase forward pass for inverted dropout. #
# Store the dropout mask in the mask variable. #
#######################################################################
mask = (np.random.rand(*x.shape) < p) / p
out = x*mask
#######################################################################
# END OF YOUR CODE #
#######################################################################
elif mode == 'test':
#######################################################################
# TODO: Implement the test phase forward pass for inverted dropout. #
#######################################################################
out = x
#######################################################################
# END OF YOUR CODE #
#######################################################################
cache = (dropout_param, mask)
out = out.astype(x.dtype, copy=False)
return out, cache
def dropout_backward(dout, cache):
"""
Perform the backward pass for (inverted) dropout.
Inputs:
- dout: Upstream derivatives, of any shape
- cache: (dropout_param, mask) from dropout_forward.
"""
dropout_param, mask = cache
mode = dropout_param['mode']
dx = None
if mode == 'train':
#######################################################################
# TODO: Implement training phase backward pass for inverted dropout #
#######################################################################
dx = dout*mask
#######################################################################
# END OF YOUR CODE #
#######################################################################
elif mode == 'test':
dx = dout
return dx
def conv_forward_naive(x, w, b, conv_param):
"""
A naive implementation of the forward pass for a convolutional layer.
The input consists of N data points, each with C channels, height H and
width W. We convolve each input with F different filters, where each filter
spans all C channels and has height HH and width WW.
Input:
- x: Input data of shape (N, C, H, W)
- w: Filter weights of shape (F, C, HH, WW)
- b: Biases, of shape (F,)
- conv_param: A dictionary with the following keys:
- 'stride': The number of pixels between adjacent receptive fields in the
horizontal and vertical directions.
- 'pad': The number of pixels that will be used to zero-pad the input.
During padding, 'pad' zeros should be placed symmetrically (i.e equally on both sides)
along the height and width axes of the input. Be careful not to modfiy the original
input x directly.
Returns a tuple of:
- out: Output data, of shape (N, F, H', W') where H' and W' are given by
H' = 1 + (H + 2 * pad - HH) / stride
W' = 1 + (W + 2 * pad - WW) / stride
- cache: (x, w, b, conv_param)
"""
out = None
###########################################################################
# TODO: Implement the convolutional forward pass. #
# Hint: you can use the function np.pad for padding. #
###########################################################################
N, C, H, W = x.shape
F, _, HH, WW = w.shape
pad = conv_param.get('pad', 0)
stride = conv_param.get('stride', 1)
x1 = np.pad(x, ((0,0),(0,0),(pad,pad),(pad,pad)), 'constant')
i = int(np.floor(HH/2))
j = int(np.floor(WW/2))
out_i = 0
out_j = 0
out_H = int(1 + (H + 2 * pad - HH) / stride)
out_W = int(1 + (W + 2 * pad - WW) / stride)
out = np.zeros((N, F, out_H, out_W))
# print('here')
while i + int(np.ceil(HH/2)) <= H + 2*pad:
while j + int(np.ceil(WW/2)) <= W+2*pad:
temp = x1[:, :, i-int(np.floor(HH/2)):i+int(np.ceil(HH/2)), j-int(np.floor(WW/2)):j+int(np.ceil(WW/2))]
temp = temp[:, np.newaxis, :]
temp = temp*w[np.newaxis, :]
temp = np.sum(temp, axis=(2,3,4)) + b
out[:,:,out_i, out_j] = temp
j = j+ stride
out_j = out_j + 1
i = i + stride
out_i += 1
out_j = 0
j = int(np.floor(WW/2))
###########################################################################
# END OF YOUR CODE #
###########################################################################
cache = (x, w, b, conv_param)
return out, cache
def conv_backward_naive(dout, cache):
"""
A naive implementation of the backward pass for a convolutional layer.
Inputs:
- dout: Upstream derivatives.
- cache: A tuple of (x, w, b, conv_param) as in conv_forward_naive
Returns a tuple of:
- dx: Gradient with respect to x
- dw: Gradient with respect to w
- db: Gradient with respect to b
"""
dx, dw, db = None, None, None
###########################################################################
# TODO: Implement the convolutional backward pass. #
###########################################################################
x, w, b, conv_param = cache
N, C, H, W = x.shape
F, _, HH, WW = w.shape
pad = conv_param.get('pad', 0)
stride = conv_param.get('stride', 1)
i = int(np.floor(HH/2))
j = int(np.floor(WW/2))
x1 = np.pad(x, ((0,0),(0,0),(pad,pad),(pad,pad)), 'constant')
dw = np.zeros(w.shape)
i = int(np.floor(HH/2))
j = int(np.floor(WW/2))
out_i = 0
out_j = 0
out_H = int(1 + (H + 2 * pad - HH) / stride)
out_W = int(1 + (W + 2 * pad - WW) / stride)
### dw ###
for f in range(F):
# print("f={}".format(f))
i = int(np.floor(HH/2))
j = int(np.floor(WW/2))
out_i = 0
out_j = 0
while i + int(np.ceil(HH/2)) <= H + 2*pad:
while j + int(np.ceil(WW/2)) <= W+2*pad:
temp_x = x1[:, :, i-int(np.floor(HH/2)):i+int(np.ceil(HH/2)), j-int(np.floor(WW/2)):j+int(np.ceil(WW/2))]
temp = dout[:, f, out_i, out_j]
temp = temp[:,np.newaxis, np.newaxis, np.newaxis]
# print("temp shape:{}".format(temp.shape))
# print("dw shape:{}".format(dw[[f],:,:,:].shape))
# print("temp_x shape:{}".format(temp_x.shape))
dw[[f],:,:,:] += np.sum(temp * temp_x, axis=0, keepdims=True)
j = j+ stride
out_j = out_j + 1
i = i + stride
out_i += 1
out_j = 0
j = int(np.floor(WW/2))
# print("dw = {}".format(dw))
#### db ####
db = np.sum(dout, axis=(0,2,3)) # dout has shape N, F, H', W'
# print("db= {}".format(db))
# print(db.shape)
#### dx ####
dx = np.zeros(x.shape)
dx1 = np.pad(dx, ((0,0),(0,0),(pad,pad),(pad,pad)), 'constant')
i = int(np.floor(HH/2))
j = int(np.floor(WW/2))
out_i = 0
out_j = 0
out_H = int(1 + (H + 2 * pad - HH) / stride)
out_W = int(1 + (W + 2 * pad - WW) / stride)
while i + int(np.ceil(HH/2)) <= H + 2*pad:
while j + int(np.ceil(WW/2)) <= W+2*pad:
temp = dout[:,:, out_i, out_j] # N, F
temp = temp[:,:, np.newaxis, np.newaxis, np.newaxis] # N, F, 1, 1, 1
temp_dx = dx1[:, :, i-int(np.floor(HH/2)):i+int(np.ceil(HH/2)), j-int(np.floor(WW/2)):j+int(np.ceil(WW/2))]
temp = temp * w[np.newaxis, :] # shape output temp = N, F, C, HH, WW; w shape: 1, F, C, HH, WW
temp = np.sum(temp, axis=1) # along F axis.
temp_dx += temp
j = j+ stride
out_j = out_j + 1
i = i + stride
out_i += 1
out_j = 0
j = int(np.floor(WW/2))
_,_, H1, W1 = dx1.shape
dx = dx1[:,:, pad:H1-pad, pad:W1-pad]
# print("dx={}".format(dx))
###########################################################################
# END OF YOUR CODE #
###########################################################################
return dx, dw, db
def max_pool_forward_naive(x, pool_param):
"""
A naive implementation of the forward pass for a max-pooling layer.
Inputs:
- x: Input data, of shape (N, C, H, W)
- pool_param: dictionary with the following keys:
- 'pool_height': The height of each pooling region
- 'pool_width': The width of each pooling region
- 'stride': The distance between adjacent pooling regions
No padding is necessary here. Output size is given by
Returns a tuple of:
- out: Output data, of shape (N, C, H', W') where H' and W' are given by
H' = 1 + (H - pool_height) / stride
W' = 1 + (W - pool_width) / stride
- cache: (x, pool_param)
"""
out = None
###########################################################################
# TODO: Implement the max-pooling forward pass #
###########################################################################
N, C, H, W = x.shape
ph = pool_param.get('pool_height', 3)
pw = pool_param.get('pool_width', 3)
stride = pool_param.get('stride', 2)
out_H = int(1 + (H - ph)/ stride)
out_W = int(1 + (W - pw)/ stride)
i = 0
j = 0
out_i = 0
out_j = 0
out = np.zeros((N, C, out_H, out_W))
while i + ph <= H:
while j + pw <= W:
# Two ways of accessing the data in the array.
# Mixing integer indexing with slices yields an array of lower rank,
# while using only slices yields an array of the same rank as the
# original array:
out[:,:,out_i:out_i+1,out_j:out_j+1] = np.amax(x[:,:, i: i+ph, j:j+pw], axis=(2,3), keepdims=True)
j += stride
out_j += 1
i += stride
out_i += 1
out_j = 0
j = 0
###########################################################################
# END OF YOUR CODE #
###########################################################################
cache = (x, pool_param)
return out, cache
def max_pool_backward_naive(dout, cache):
"""
A naive implementation of the backward pass for a max-pooling layer.
Inputs:
- dout: Upstream derivatives
- cache: A tuple of (x, pool_param) as in the forward pass.
Returns:
- dx: Gradient with respect to x
"""
dx = None
###########################################################################
# TODO: Implement the max-pooling backward pass #
###########################################################################
x, pool_param = cache
N, C, H, W = x.shape
ph = pool_param.get('pool_height', 3)
pw = pool_param.get('pool_width', 3)
stride = pool_param.get('stride', 2)
dx = np.zeros(x.shape)
_, _, out_H, out_W = dout.shape
out_i = 0
out_j = 0
i = 0
j = 0
while i + ph <= H:
while j + pw <= W:
# Two ways of accessing the data in the array.
# Mixing integer indexing with slices yields an array of lower rank,
# while using only slices yields an array of the same rank as the
# original array:
temp = np.amax(x[:,:, i: i+ph, j:j+pw], axis=(2,3), keepdims=True) == x[:,:, i:i+ph, j:j+pw]
# print(temp.shape)
# print(dx.shape)
# print('---')
# print(temp*dout[:,:, out_i:out_i+1, out_j:out_j+1])
# print('---')
# print(dx[:,:,i:i+ph, j:j+ph])
# print("i:{}, j:{}".format(i,j))
dx[:,:, i:i+ph, j:j+pw] += temp * dout[:,:, out_i:out_i+1, out_j:out_j+1]
j += stride
out_j += 1
i += stride
j = 0
out_i += 1
out_j = 0
###########################################################################
# END OF YOUR CODE #
###########################################################################
return dx
def spatial_batchnorm_forward(x, gamma, beta, bn_param):
"""
Computes the forward pass for spatial batch normalization.
Inputs:
- x: Input data of shape (N, C, H, W)
- gamma: Scale parameter, of shape (C,)
- beta: Shift parameter, of shape (C,)
- bn_param: Dictionary with the following keys:
- mode: 'train' or 'test'; required
- eps: Constant for numeric stability
- momentum: Constant for running mean / variance. momentum=0 means that
old information is discarded completely at every time step, while
momentum=1 means that new information is never incorporated. The
default of momentum=0.9 should work well in most situations.
- running_mean: Array of shape (D,) giving running mean of features
- running_var Array of shape (D,) giving running variance of features
Returns a tuple of:
- out: Output data, of shape (N, C, H, W)
- cache: Values needed for the backward pass
"""
out, cache = None, None
###########################################################################
# TODO: Implement the forward pass for spatial batch normalization. #
# #
# HINT: You can implement spatial batch normalization by calling the #
# vanilla version of batch normalization you implemented above. #
# Your implementation should be very short; ours is less than five lines. #
###########################################################################
# From the arXiv paper, the batch size would be B = m*p*q, i.e along all
# spatial dimension and training examples N. So is we have a size of N x C x H x W
# We need to pick each channel from every N and reshape it into a column vector
# So our final matrix as input to vanilla batch norm would be (N*H*W) x C
N, C, H, W = x.shape
x = x.reshape(N, C, -1) # output size : N, C, H*W
x = np.concatenate(x, axis=1) # N training examples are grouped , out size: C x (N*H*W)
x = x.T
out, cache = batchnorm_forward(x, gamma, beta, bn_param) # out size (N*H*W) x C
# Have to reshape out to N x C x H X W
out = np.split(out, N, axis=0) # out will now be a "N" length list with shape (H*W) X C
out = [x.T.reshape(C, H, W) for x in out] # each entry in out list will now be a C X H X W numpy array
out = np.stack(out) # stacks arrays along axis 0, so final out will have shape N x C x H x W
###########################################################################
# END OF YOUR CODE #
###########################################################################
return out, cache
def spatial_batchnorm_backward(dout, cache):
"""
Computes the backward pass for spatial batch normalization.
Inputs:
- dout: Upstream derivatives, of shape (N, C, H, W)
- cache: Values from the forward pass
Returns a tuple of:
- dx: Gradient with respect to inputs, of shape (N, C, H, W)
- dgamma: Gradient with respect to scale parameter, of shape (C,)
- dbeta: Gradient with respect to shift parameter, of shape (C,)
"""
dx, dgamma, dbeta = None, None, None
###########################################################################
# TODO: Implement the backward pass for spatial batch normalization. #
# #
# HINT: You can implement spatial batch normalization by calling the #
# vanilla version of batch normalization you implemented above. #
# Your implementation should be very short; ours is less than five lines. #
###########################################################################
# From the arXiv paper, the batch size would be B = m*p*q, i.e along all
# spatial dimension and training examples m. So is we have a size of N x C x H x W
# We need to pick each channel from every N and reshape it into a column vector
# So our final matrix as input to vanilla batch norm would be (N*H*W) x C
N, C, H, W = dout.shape
dout = dout.reshape(N, C, -1) # output size : N, C, H*W
dout = np.concatenate(dout, axis=1) # N training examples are grouped , out size: C x (N*H*W)
dout = dout.T
dx, dgamma, dbeta = batchnorm_backward_alt(dout, cache) # dx size (N*H*W) x C
# Have to reshape out to N x C x H X W
dx = np.split(dx, N, axis=0) # dx will now be a "N" length list with shape (H*W) X C
dx = [val.T.reshape(C, H, W) for val in dx] # each entry in out list will now be a C X H X W numpy array
dx = np.stack(dx) # stacks arrays along axis 0, so final out will have shape N x C x H x W
###########################################################################
# END OF YOUR CODE #
###########################################################################
return dx, dgamma, dbeta
def spatial_groupnorm_forward(x, gamma, beta, G, gn_param):
"""
Computes the forward pass for spatial group normalization.
In contrast to layer normalization, group normalization splits each entry
in the data into G contiguous pieces, which it then normalizes independently.
Per feature shifting and scaling are then applied to the data, in a manner identical to that of batch normalization and layer normalization.
Inputs:
- x: Input data of shape (N, C, H, W)
- gamma: Scale parameter, of shape (C,)
- beta: Shift parameter, of shape (C,)
- G: Integer mumber of groups to split into, should be a divisor of C
- gn_param: Dictionary with the following keys:
- eps: Constant for numeric stability
Returns a tuple of:
- out: Output data, of shape (N, C, H, W)
- cache: Values needed for the backward pass
"""
out, cache = None, None
eps = gn_param.get('eps',1e-5)
###########################################################################
# TODO: Implement the forward pass for spatial group normalization. #
# This will be extremely similar to the layer norm implementation. #
# In particular, think about how you could transform the matrix so that #
# the bulk of the code is similar to both train-time batch normalization #
# and layer normalization! #
###########################################################################
N, C, H, W = x.shape
out = np.zeros(x.shape)
num_it = int(C/G)
# print("num_it:{}".format(num_it))
cache = {}
for i in range(G):
temp_inp = x[:,i*num_it:(i+1)*num_it,:,:] # shape -> N x num_it x H x W
temp_inp = temp_inp.reshape(N, -1)
# check np.repeat. Repeats each element. Since while rehaping, the all HxW from channel1
# and arranged after HxW from channel2, we need to scale and shift them by appropriate
# gamma and beta