-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGesture_Controller_Gloved.py
545 lines (428 loc) · 20.6 KB
/
Gesture_Controller_Gloved.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import numpy as np
import cv2
import cv2.aruco as aruco
import os
import glob
import math
import pyautogui
import time
class Marker:
def __init__(self, dict_type = aruco.DICT_4X4_50, thresh_constant = 1):
self.aruco_dict = aruco.Dictionary_get(dict_type)
self.parameters = aruco.DetectorParameters_create()
self.parameters.adaptiveThreshConstant = thresh_constant
self.corners = None # corners of Marker
self.marker_x2y = 1 # width:height ratio
self.mtx, self.dist = Marker.calibrate()
def calibrate():
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
path = os.path.dirname(os.path.abspath(__file__))
p1 = path + r'\calib_images\checkerboard\*.jpg'
images = glob.glob(p1)
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, (7,6),None)
if ret == True:
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
imgpoints.append(corners2)
img = cv2.drawChessboardCorners(img, (7,6), corners2,ret)
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
#mtx = [[534.34144579,0.0,339.15527836],[0.0,534.68425882,233.84359493],[0.0,0.0,1.0]]
#dist = [[-2.88320983e-01, 5.41079685e-02, 1.73501622e-03, -2.61333895e-04, 2.04110465e-01]]
return mtx, dist
def detect(self, frame):
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
self.corners, ids, rejectedImgPoints = aruco.detectMarkers(gray_frame, self.aruco_dict, parameters = self.parameters)
if np.all(ids != None):
rvec, tvec ,_ = aruco.estimatePoseSingleMarkers(self.corners, 0.05, self.mtx, self.dist)
else:
self.corners = None
def is_detected(self):
if self.corners:
return True
return False
def draw_marker(self, frame):
aruco.drawDetectedMarkers(frame, self.corners)
def ecu_dis(p1, p2):
dist = np.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
return dist
def find_HSV(samples):
try:
color = np.uint8([ samples ])
except:
color = np.uint8([ [[105,105,50]] ])
hsv_color = cv2.cvtColor(color,cv2.COLOR_RGB2HSV)
#print( hsv_color )
return hsv_color
def draw_box(frame, points, color=(0,255,127)):
if points:
frame = cv2.line(frame, points[0], points[1], color, thickness=2, lineType=8) #top
frame = cv2.line(frame, points[1], points[2], color, thickness=2, lineType=8) #right
frame = cv2.line(frame, points[2], points[3], color, thickness=2, lineType=8) #bottom
frame = cv2.line(frame, points[3], points[0], color, thickness=2, lineType=8) #left
def in_cam(val, type_):
if type_ == 'x':
if val<0:
return 0
if val>GestureController.cam_width:
return GestureController.cam_width
elif type_ == 'y':
if val<0:
return 0
if val>GestureController.cam_height:
return GestureController.cam_height
return val
class ROI:
def __init__(self, roi_alpha1=1.5, roi_alpha2=1.5, roi_beta=2.5, hsv_alpha = 0.3, hsv_beta = 0.5, hsv_lift_up = 0.3):
self.roi_alpha1 = roi_alpha1
self.roi_alpha2 = roi_alpha2
self.roi_beta = roi_beta
self.roi_corners = None
self.hsv_alpha = hsv_alpha
self.hsv_beta = hsv_beta
self.hsv_lift_up = hsv_lift_up
self.hsv_corners = None
self.marker_top = None
self.glove_hsv = None
def findROI(self, frame, marker):
rec_coor = marker.corners[0][0]
c1 = (int(rec_coor[0][0]),int(rec_coor[0][1]))
c2 = (int(rec_coor[1][0]),int(rec_coor[1][1]))
c3 = (int(rec_coor[2][0]),int(rec_coor[2][1]))
c4 = (int(rec_coor[3][0]),int(rec_coor[3][1]))
try:
marker.marker_x2y = np.sqrt((c1[0]-c2[0])**2 + (c1[1]-c2[1])**2) / np.sqrt((c3[0]-c2[0])**2 + (c3[1]-c2[1])**2)
except:
marker.marker_x2y = 999.0
#mid-point of top line of Marker
cx = (c1[0] + c2[0])/2
cy = (c1[1] + c2[1])/2
self.marker_top = [cx, cy]
l = np.absolute(ecu_dis(c1,c4))
try:
slope_12 = (c1[1]-c2[1])/(c1[0]-c2[0])
except:
slope_12 = (c1[1]-c2[1])*999.0 + 0.1
try:
slope_14 = -1 / slope_12
except:
slope_14 = -999.0
if slope_14 < 0:
sign = 1
else:
sign = -1
bot_rx = int(cx + self.roi_alpha2 * l * np.sqrt(1/(1+slope_12**2)))
bot_ry = int(cy + self.roi_alpha2 * slope_12 * l * np.sqrt(1/(1+slope_12**2)))
bot_lx = int(cx - self.roi_alpha1 * l * np.sqrt(1/(1+slope_12**2)))
bot_ly = int(cy - self.roi_alpha1 * slope_12 * l * np.sqrt(1/(1+slope_12**2)))
top_lx = int(bot_lx + sign * self.roi_beta * l * np.sqrt(1/(1+slope_14**2)))
top_ly = int(bot_ly + sign * self.roi_beta * slope_14 * l * np.sqrt(1/(1+slope_14**2)))
top_rx = int(bot_rx + sign * self.roi_beta * l * np.sqrt(1/(1+slope_14**2)))
top_ry = int(bot_ry + sign * self.roi_beta * slope_14 * l * np.sqrt(1/(1+slope_14**2)))
bot_lx = in_cam(bot_lx, 'x')
bot_ly = in_cam(bot_ly, 'y')
bot_rx = in_cam(bot_rx, 'x')
bot_ry = in_cam(bot_ry, 'y')
top_lx = in_cam(top_lx, 'x')
top_ly = in_cam(top_ly, 'y')
top_rx = in_cam(top_rx, 'x')
top_ry = in_cam(top_ry, 'y')
self.roi_corners = [(bot_lx,bot_ly), (bot_rx,bot_ry), (top_rx,top_ry), (top_lx,top_ly)]
def find_glove_hsv(self, frame, marker):
rec_coor = marker.corners[0][0]
c1 = (int(rec_coor[0][0]),int(rec_coor[0][1]))
c2 = (int(rec_coor[1][0]),int(rec_coor[1][1]))
c3 = (int(rec_coor[2][0]),int(rec_coor[2][1]))
c4 = (int(rec_coor[3][0]),int(rec_coor[3][1]))
l = np.absolute(ecu_dis(c1,c4))
try:
slope_12 = (c1[1]-c2[1])/(c1[0]-c2[0])
except:
slope_12 = (c1[1]-c2[1])*999.0 + 0.1
try:
slope_14 = -1 / slope_12
except:
slope_14 = -999.0
if slope_14 < 0:
sign = 1
else:
sign = -1
bot_rx = int(self.marker_top[0] + self.hsv_alpha * l * np.sqrt(1/(1+slope_12**2)))
bot_ry = int(self.marker_top[1] - self.hsv_lift_up*l + self.hsv_alpha * slope_12 * l * np.sqrt(1/(1+slope_12**2)))
bot_lx = int(self.marker_top[0] - self.hsv_alpha * l * np.sqrt(1/(1+slope_12**2)))
bot_ly = int(self.marker_top[1] - self.hsv_lift_up*l - self.hsv_alpha * slope_12 * l * np.sqrt(1/(1+slope_12**2)))
top_lx = int(bot_lx + sign * self.hsv_beta * l * np.sqrt(1/(1+slope_14**2)))
top_ly = int(bot_ly + sign * self.hsv_beta * slope_14 * l * np.sqrt(1/(1+slope_14**2)))
top_rx = int(bot_rx + sign * self.hsv_beta * l * np.sqrt(1/(1+slope_14**2)))
top_ry = int(bot_ry + sign * self.hsv_beta * slope_14 * l * np.sqrt(1/(1+slope_14**2)))
region = frame[top_ry:bot_ry , top_lx:bot_rx]
b, g, r = np.mean(region, axis=(0, 1))
self.hsv_glove = find_HSV([[r,g,b]])
self.hsv_corners = [(bot_lx,bot_ly), (bot_rx,bot_ry), (top_rx,top_ry), (top_lx,top_ly)]
def cropROI(self, frame):
pts = np.array(self.roi_corners)
## (1) Crop the bounding rect
rect = cv2.boundingRect(pts)
x,y,w,h = rect
croped = frame[y:y+h, x:x+w].copy()
## (2) make mask
pts = pts - pts.min(axis=0)
mask = np.zeros(croped.shape[:2], np.uint8)
cv2.drawContours(mask, [pts], -1, (255, 255, 255), -1, cv2.LINE_AA)
## (3) do bit-op
dst = cv2.bitwise_and(croped, croped, mask=mask)
## (4) add the white background
bg = np.ones_like(croped, np.uint8)*255
cv2.bitwise_not(bg,bg, mask=mask)
kernelOpen = np.ones((3,3),np.uint8)
kernelClose = np.ones((5,5),np.uint8)
hsv = cv2.cvtColor(dst, cv2.COLOR_BGR2HSV)
lower_range = np.array([self.hsv_glove[0][0][0]//1-5,50,50])
upper_range = np.array([self.hsv_glove[0][0][0]//1+5,255,255])
mask = cv2.inRange(hsv, lower_range, upper_range)
#mask = cv2.dilate(mask,kernelOpen,iterations = 1)
Opening =cv2.morphologyEx(mask,cv2.MORPH_OPEN,kernelOpen)
Closing =cv2.morphologyEx(Opening,cv2.MORPH_CLOSE,kernelClose)
FinalMask = Closing
return FinalMask
class Glove:
def __init__(self):
self.fingers = 0
self.arearatio = 0
self.gesture = 0
def find_fingers(self, FinalMask):
conts,h=cv2.findContours(FinalMask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
hull = [cv2.convexHull(c) for c in conts]
try:
cnt = max(conts, key = lambda x: cv2.contourArea(x))
#approx the contour a little
epsilon = 0.0005*cv2.arcLength(cnt,True)
approx= cv2.approxPolyDP(cnt,epsilon,True)
#make convex hull around hand
hull = cv2.convexHull(cnt)
#define area of hull and area of hand
areahull = cv2.contourArea(hull)
areacnt = cv2.contourArea(cnt)
#find the percentage of area not covered by hand in convex hull
self.arearatio=((areahull-areacnt)/areacnt)*100
#find the defects in convex hull with respect to hand
hull = cv2.convexHull(approx, returnPoints=False)
defects = cv2.convexityDefects(approx, hull)
except:
print("No Contours found in FinalMask")
# l = no. of defects
l=0
try:
#code for finding no. of defects due to fingers
for i in range(defects.shape[0]):
s,e,f,d = defects[i,0]
start = tuple(approx[s][0])
end = tuple(approx[e][0])
far = tuple(approx[f][0])
# find length of all sides of triangle
a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
s = (a+b+c)/2
ar = math.sqrt(s*(s-a)*(s-b)*(s-c))
#distance between point and convex hull
d=(2*ar)/a
# apply cosine rule here
angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 57
# ignore angles > 90 and ignore points very close to convex hull(they generally come due to noise)
if angle <= 90 and d>30:
l += 1
#cv2.circle(frame, far, 3, [255,255,255], -1)
#draw lines around hand
cv2.line(FinalMask,start, end, [255,255,255], 2)
l+=1
except:
l = 0
print("No Defects found in mask")
self.fingers = l
def find_gesture(self, frame):
font = cv2.FONT_HERSHEY_SIMPLEX
self.gesture = 0
if self.fingers==1:
#cv2.putText(frame, str(int(arearatio)), (10,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
if self.arearatio<15:
cv2.putText(frame,'0',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
self.gesture = 0
elif self.arearatio<25:
cv2.putText(frame,'2 fingers',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
self.gesture = 2
else:
cv2.putText(frame,'1 finger',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
self.gesture = 1
elif self.fingers==2:
cv2.putText(frame,'2',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
self.gesture = 3
'''
elif self.fingers==3:
#cv2.putText(frame,'3',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
elif self.fingers==4:
#cv2.putText(frame,'4',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
elif self.fingers==5:
#cv2.putText(frame,'5',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
else :
# cv2.putText(frame,'reposition',(10,50), font, 2, (0,0,255), 3, cv2.LINE_AA)
'''
class Tracker:
def __init__(self):
self.tracker_started = False
self.tracker = None
self.start_time = 0.0
self.now_time = 0.0
self.tracker_bbox = None
def corners_to_tracker(self, corners):
csrt_minX = int( min( [corners[0][0][0][0], corners[0][0][1][0], corners[0][0][2][0], corners[0][0][3][0]] ))
csrt_maxX = int( max( [corners[0][0][0][0], corners[0][0][1][0], corners[0][0][2][0], corners[0][0][3][0]] ))
csrt_minY = int( min( [corners[0][0][0][1], corners[0][0][1][1], corners[0][0][2][1], corners[0][0][3][1]] ))
csrt_maxY = int( max( [corners[0][0][0][1], corners[0][0][1][1], corners[0][0][2][1], corners[0][0][3][1]] ))
self.tracker_bbox = [csrt_minX, csrt_minY, csrt_maxX-csrt_minX, csrt_maxY-csrt_minY]
def tracker_to_corner(self, final_bbox):
if self.tracker_bbox == None:
return None
final_bbox = [[[1,2],[3,4],[5,6],[7,8]]]
final_bbox[0][0] = [self.tracker_bbox[0],self.tracker_bbox[1]]
final_bbox[0][1] = [self.tracker_bbox[0]+ self.tracker_bbox[2],self.tracker_bbox[1]]
final_bbox[0][2] = [self.tracker_bbox[0]+ self.tracker_bbox[2],self.tracker_bbox[1] + self.tracker_bbox[3]]
final_bbox[0][3] = [self.tracker_bbox[0],self.tracker_bbox[1] +self.tracker_bbox[3]]
return [np.array(final_bbox, dtype = 'f')]
def CSRT_tracker(self, frame):
if self.tracker_bbox == None and self.tracker_started == False:
return
if self.tracker_started == False:
if self.tracker == None:
self.tracker = cv2.TrackerCSRT_create()
if self.tracker_bbox != None:
try:
self.start_time = time.time()
ok = self.tracker.init(frame, self.tracker_bbox)
self.tracker_started = True
except:
print("tracker.init failed")
try:
ok, self.tracker_bbox = self.tracker.update(frame)
except:
ok = None
print("tracker.update failed")
self.now_time = time.time()
if self.now_time-self.start_time >= 2.0 :
#cv2.putText(frame, "Please posture your hand correctly", (10,50), cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),1)
cv2.putText(frame,'Posture your hand correctly',(10,10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,255), 1, cv2.LINE_AA)
#print("tracking timeout")
self.tracker_started = False
self.tracker_bbox = None
return
if ok:
# Tracking success
p1 = (int(self.tracker_bbox[0]), int(self.tracker_bbox[1]))
p2 = (int(self.tracker_bbox[0] + self.tracker_bbox[2]), int(self.tracker_bbox[1] + self.tracker_bbox[3]))
cv2.rectangle(frame, p1, p2, (80, 255, 255), 2, 1)
else :
# Tracking failure
self.tracker_started = False
cv2.putText(frame, "Tracking failure detected", (100,80), cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2)
print("Tracking failure detected")
#reintiallize code to tackle tracking failure
class Mouse:
def __init__(self):
self.tx_old = 0
self.ty_old = 0
self.trial = True
self.flag = 0
def move_mouse(self,frame,position,gesture):
(sx,sy)=pyautogui.size()
(camx,camy) = (frame.shape[:2][0],frame.shape[:2][1])
(mx_old,my_old) = pyautogui.position()
Damping = 2 # Hyperparameter we will have to adjust
tx = position[0]
ty = position[1]
if self.trial:
self.trial, self.tx_old, self.ty_old = False, tx, ty
delta_tx = tx - self.tx_old
delta_ty = ty - self.ty_old
self.tx_old,self.ty_old = tx,ty
if (gesture == 3):
self.flag = 0
mx = mx_old + (delta_tx*sx) // (camx*Damping)
my = my_old + (delta_ty*sy) // (camy*Damping)
pyautogui.moveTo(mx,my, duration = 0.1)
elif(gesture == 0):
if self.flag == 0:
pyautogui.doubleClick()
self.flag = 1
elif(gesture == 1):
print('1 Finger Open')
class GestureController:
gc_mode = 0
pyautogui.FAILSAFE = False
f_start_time = 0
f_now_time = 0
cam_width = 0
cam_height = 0
aru_marker = Marker()
hand_roi = ROI(2.5, 2.5, 6, 0.45, 0.6, 0.4)
glove = Glove()
csrt_track = Tracker()
mouse = Mouse()
def __init__(self):
GestureController.cap = cv2.VideoCapture(0)
if GestureController.cap.isOpened():
GestureController.cam_width = int( GestureController.cap.get(cv2.CAP_PROP_FRAME_WIDTH) )
GestureController.cam_height = int( GestureController.cap.get(cv2.CAP_PROP_FRAME_HEIGHT) )
else:
print("CANNOT OPEN CAMERA")
GestureController.gc_mode = 1
GestureController.f_start_time = time.time()
GestureController.f_now_time = time.time()
def start(self):
while (True):
#mode checking
if not GestureController.gc_mode:
print('Exiting Gesture Controller')
break
#fps control
fps = 30.0
GestureController.f_start_time = time.time()
while (GestureController.f_now_time-GestureController.f_start_time <= 1.0/fps):
GestureController.f_now_time = time.time()
#read camera
ret, frame = GestureController.cap.read()
frame = cv2.flip(frame, 1)
#detect Marker, find ROI, find glove HSV, get FinalMask on glove
GestureController.aru_marker.detect(frame)
if GestureController.aru_marker.is_detected():
GestureController.csrt_track.corners_to_tracker(GestureController.aru_marker.corners)
GestureController.csrt_track.CSRT_tracker(frame)
else:
GestureController.csrt_track.tracker_bbox = None
GestureController.csrt_track.CSRT_tracker(frame)
GestureController.aru_marker.corners = GestureController.csrt_track.tracker_to_corner(GestureController.aru_marker.corners)
if GestureController.aru_marker.is_detected():
GestureController.hand_roi.findROI(frame, GestureController.aru_marker)
GestureController.hand_roi.find_glove_hsv(frame, GestureController.aru_marker)
FinalMask = GestureController.hand_roi.cropROI(frame)
GestureController.glove.find_fingers(FinalMask)
GestureController.glove.find_gesture(frame)
GestureController.mouse.move_mouse(frame,GestureController.hand_roi.marker_top,GestureController.glove.gesture)
#draw call
if GestureController.aru_marker.is_detected():
GestureController.aru_marker.draw_marker(frame)
draw_box(frame, GestureController.hand_roi.roi_corners, (255,0,0))
draw_box(frame, GestureController.hand_roi.hsv_corners, (0,0,250))
cv2.imshow('FinalMask',FinalMask)
#display frame
cv2.imshow('frame',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
GestureController.cap.release()
cv2.destroyAllWindows()