-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhf_args.py
461 lines (384 loc) · 14.7 KB
/
hf_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
collection of dataclasses for hyperparameter arguments
"""
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
)
},
)
resize_position_embeddings: Optional[bool] = field(
default=None,
metadata={
"help": (
"Whether to automatically resize the position embeddings if `max_source_length` exceeds "
"the model's position embeddings."
)
},
)
is_encoder_decoder: bool = field(
default=False,
metadata={"help": "Set this flag if you are training an encoder-decoder model."},
)
tie_encoder_decoder: Optional[bool] = field(
default=False,
metadata={"help": "to create a shared encoder-decoder model, set this to True"}
)
init_as_random: bool = field(
default=False,
metadata={"help": "Initialize model with random weights to train from scratch, instead of loading from pre-trained checkpoint"}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
summary_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
)
knowledge_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the knowledge snippet (for knowledge-grounded dialog gen)."},
)
knowledge_bucket_size: Optional[int] = field(
default=32,
metadata={"help": "The number of tokens in the knowledge bucket (for knowledge-grounded dialog gen)."},
)
history_bucket_size: Optional[int] = field(
default=25,
metadata={"help": "The number of tokens in the history bucket (for knowledge-grounded dialog gen)."},
)
speaker_id_tag: Optional[str] = field(
default='<speaker1>',
metadata={"help": "The tag used to indicate the speaker in the knowledge column (for knowledge-grounded dialog gen)."},
)
project_name: Optional[str] = field(
default='unsup_ctrl',
metadata={"help": "Project name used for logging to WandB."},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": (
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
)
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
persist_datasets: bool = field(
default=False, metadata={"help": "Save the preprocessed datasets to disk as json lines. This will take more space."}
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[float] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[float] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[float] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
source_prefix: Optional[str] = field(
default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
forced_bos_token: Optional[str] = field(
default=None,
metadata={
"help": (
"The token to force as the first generated token after the decoder_start_token_id."
"Useful for multilingual models like mBART where the first generated token"
"needs to be the target language token (Usually it is the target language token)"
)
},
)
early_stopping: bool = field(
default=False,
metadata={
"help": "whether or not to monitor for early stopping"
},
)
early_stopping_patience: Optional[int] = field(
default=3,
metadata={
"help": "number of eval steps to run before terminating due to no improvement"
},
)
early_stopping_threshold: Optional[float] = field(
default=0.0,
metadata={
"help": "how much the specified metric must improve to satisfy early stopping conditions"
},
)
eval_runs_per_epoch: Optional[int] = field(
default=1,
metadata={
"help": "number of eval runs to perform per epoch (for experimental purposes). Note, this will override the `eval_steps` and `save_steps` argument."
},
)
write_intermediate_eval_results: bool = field(
default=False,
metadata={
"help": "whether or not to write intermediate eval results to disk. If True, will save results to json files in the output_dir"
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None and self.test_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
@dataclass
class InferenceArguments:
"""
Arguments pertaining to running generation/inference with pre-trained/fine-tuned model.
"""
checkpoint_dir: str = field(
default=None,
metadata={"help": "Path to fine-tuned model checkpoint"}
)
output_dir: str = field(
default=None,
metadata={"help": "Path to output directory"}
)
seed: int = field(
default=42,
metadata={"help": "random seed"}
)
use_cuda: bool = field(
default=True,
metadata={"help": "Use GPU if available"}
)
batch_size: int = field(
default=3,
metadata={"help": "Batch size for predictions"}
)
min_length: int = field(
default=None,
metadata={"help": "Minimum length of generated text"}
)
max_length: int = field(
default=64,
metadata={"help": "Maximum length of generated text"}
)
length_penalty: float = field(
default=1.0,
metadata={"help": "Length penalty for generated text"}
)
no_early_stop: bool = field(
default=False,
metadata={"help": "Disable early stopping on generate"}
)
num_return_sequences: int = field(
default=1,
metadata={"help": "Number of sequences to generate"}
)
beam_size: int = field(
default=4,
metadata={"help": "Number of beams for beam search"}
)
do_sample: bool = field(
default=False,
metadata={"help": "Sample instead of greedy decoding"}
)
temperature: float = field(
default=1.0,
metadata={"help": "Temperature for generation"}
)
top_k: int = field(
default=0,
metadata={"help": "Number of top k tokens to keep for top-k sampling"}
)
top_p: float = field(
default=0.0,
metadata={"help": "Probability of top-p sampling"}
)
# use_cross_attention_bias: bool = field(
# default=False,
# metadata={"help": "Use cross attention"}
# )
cross_attention_bias_value: int = field(
default=1,
metadata={"help": "Value used to bias cross attention. Default = 1, i.e. no bias. "
"A bias of 0 acts similarly to setting a custom attention mask for the cross attention."}
)
context_augmentation_examples: str = field(
default=None,
metadata={"help": "source for context examples if using context augmentation as described by Hazarika et al., 2021. "
"If a file path is provided, example sentences are expected to be one per line"}
)
max_context_examples: int = field(
default=10,
metadata={"help": "number of context examples to use for context augmentation"}
)
context_code_attention_bias_value: int = field(
default=1,
metadata={"help": "Value used to bias cross attention given context augmentation. Default = 1, i.e. no bias. "
"A bias of 0 acts similarly to setting a custom attention mask for the cross attention."}
)
bias_profile: str = field(
default='',
metadata={"help": "Where to apply the cross attention bias\n"
"'' means no cross attention bias (i.e. default)\n"
"`knowledge` means apply the bias to the knowledge bucket of the input (for use with KGD).\n"
"`positional` means apply the bias to the position-specific tokens\n"
}
)
cross_attention_positions: str = field(
default=None,
metadata={"help": "Start and end positions of the cross attention biad value."}
)
write_to_file: str = field(
default='auto',
metadata={"help": "Output file for generated text or `auto` to generate outfile name based on generation parameters"}
)
verbose: bool = field(
default=False,
metadata={"help": "Print progress"}
)
data_seed: int = field(
default=42,
metadata={"help": "random seed for data loading"}
)
debug: bool = field(
default=False,
metadata={"help": "Print debug information"}
)
if __name__ == "__main__":
pass