-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot.py
195 lines (151 loc) · 4.39 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from langchain.embeddings import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Pinecone
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationSummaryMemory
from langchain.retrievers import WikipediaRetriever
import pinecone
import time
from config import OPENAI_API_KEY, PINECONE_API_KEY, PINECONE_ENVIRONMENT, PINECONE_INDEX_NAME, EMBEDDING_MODEL
# Helper functions
def print_source(result):
sources = result["source_documents"]
for i in range(min(3, len(sources))):
print("="*60)
print(f"Source [{i+1}] \t File: [{sources[i].metadata['source']}] \t Page: [{int(sources[i].metadata['page'])}]")
print("="*60)
print(sources[i].page_content)
print("="*60)
print()
def print_wiki_source(result):
sources = result["source_documents"]
for i in range(min(3, len(sources))):
print("="*60)
print(f"Source [{i+1}] \t Title: [{sources[i].metadata['title']}]")
print(f"URL: [{sources[i].metadata['source']}]")
print("="*60)
print(sources[i].page_content)
print("="*60)
print()
def print_answer(result):
print("="*30)
print(" "*10 + "Question")
print("="*30)
print(result["question"])
print("="*30)
print()
print("="*30)
print(" "*10 + "Answer")
print("="*30)
print(result["answer"])
print("="*30)
print()
def if_existed(query, vectorstore):
is_existed = True
try:
res = vectorstore.max_marginal_relevance_search(
query=query,
k=4,
fetch_k=20,
lambda_mult=0.5
)
if len(res) == 0:
is_existed = False
except:
is_existed = False
return is_existed
def search(query, vector_chain, vectorstore, wiki_chain):
if if_existed(query, vectorstore):
res = vector_chain({"question": query})
print_answer(res)
print_source(res)
else:
print("Let me grab Wikipedia to answer your question......")
res = wiki_chain({"question": query})
print_answer(res)
print_wiki_source(res)
# Initialize OpenAI
llm = ChatOpenAI(openai_api_key=OPENAI_API_KEY)
embedding_model = OpenAIEmbeddings(
openai_api_key=OPENAI_API_KEY,
model=EMBEDDING_MODEL
)
print("="*30)
print("OpenAI initialization: OK")
print("="*30)
print()
# Initialize Pinecone vector storage
pinecone.init(
api_key=PINECONE_API_KEY,
environment=PINECONE_ENVIRONMENT
)
if PINECONE_INDEX_NAME not in pinecone.list_indexes():
# we create a new index if it doesn't exist
pinecone.create_index(
name=PINECONE_INDEX_NAME,
metric='cosine',
dimension=1536 # 1536 dim of text-embedding-ada-002
)
# wait for index to be initialized
time.sleep(1)
pinecone_index = pinecone.Index(PINECONE_INDEX_NAME)
pinecone_stats = pinecone_index.describe_index_stats()
print("="*30)
print("Pinecone initialization: OK")
print(pinecone_stats)
print("="*30)
print()
# Retriever
vectorstore = Pinecone(pinecone_index, embedding_model, "text")
retriever = vectorstore.as_retriever(
search_type="mmr",
search_kwargs={
"k": 5,
"lambda_mult": 0.5, # the optimal mix of diversity and accuracy in the result set
}
)
wiki_retriever = WikipediaRetriever()
print("="*30)
print("Pinecone retriever: OK")
print("="*30)
print()
# Chat memory
memory = ConversationSummaryMemory(
llm=llm,
memory_key="chat_history",
input_key='question',
output_key='answer',
return_messages=True
)
print("="*30)
print("Chat memory: OK")
print("="*30)
print()
# Conversational Retrieval Chain
conversation_qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
chain_type="stuff",
retriever=retriever,
memory=memory,
return_source_documents=True,
verbose=False
)
wiki_qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=wiki_retriever,
memory=memory,
return_source_documents=True,
verbose=False
)
print("="*30)
print("Conversational Retrieval Chain: OK")
print("="*30)
print()
query = ""
while query != "quit":
query = input("You: ")
if query == "clear":
memory.clear()
elif query != "quit":
search(query, conversation_qa_chain, vectorstore, wiki_qa_chain)
print("Chat bot exited.")