-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemoPS.m
243 lines (228 loc) · 10.5 KB
/
demoPS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
clc; clearvars; close all; rng(0);
nRepeats=8;
nRs=2.^(1:6); % number of rules
lambda=0.05; % L2 regularization coefficient
alpha0=0.01; alphas=10.^(0:-0.5:-4); % initial learning rate
P0=0.5; Ps=.1:.1:1; % DropRule rate
gammaP0=0.5; gammaPs=.1:.1:1.2; % powerball param
nIt=1000; % number of iterations
Nbs=64; % batch size
LN00={'FCM-RDpA'};
LN0=strcat(repmat(LN00,size(alphas)),'-alpha',reshape(repmat(cellstr(string(log10(alphas))),length(LN00),1),1,[]));
LN0=[LN0 strcat(repmat(LN00,size(Ps)),'-P',reshape(repmat(cellstr(string(Ps)),length(LN00),1),1,[]))];
LN0=[LN0 strcat(repmat(LN00,size(gammaPs)),'-gamma',reshape(repmat(cellstr(string(gammaPs)),length(LN00),1),1,[]))];
LN=cell(1,length(LN0)*length(nRs)+1);
LN(1)={'RR'};
for i=1:length(nRs)
LN(2+(i-1)*length(LN0):1+i*length(LN0))=strcat(LN0, ['-nR' num2str(nRs(i))]);
end
nAlgs=length(LN);
datasets={'Concrete-CS';'Concrete-Flow';'Concrete-Slump';'tecator-fat';'tecator-moisture';'tecator-protein';'Yacht';'autoMPG';'NO2';'PM10';'Housing';'CPS';'EnergyEfficiency-Cooling';'EnergyEfficiency-Heating';'Concrete';'Airfoil';'Wine-red';'Abalone';'Abalone-onehot';'Wine-white';'PowerPlant';'Protein'};
datasets=datasets(1)
% Display results in parallel computing
dqWorker = parallel.pool.DataQueue; afterEach(dqWorker, @(data) fprintf('%d-%d ', data{1},data{2})); % print progress of parfor
[RMSEtrain,RMSEtest,RMSEtune]=deal(cellfun(@(u)nan(length(datasets),nAlgs,nIt),cell(nRepeats,1),'UniformOutput',false));
[times,BestP,Bestalpha,BestgammaP]=deal(cellfun(@(u)nan(length(datasets),nAlgs),cell(nRepeats,1),'UniformOutput',false));
BestmIter=cellfun(@(u)ones(length(datasets),nAlgs),cell(nRepeats,1),'UniformOutput',false);
thres=cellfun(@(u)inf(length(datasets),nAlgs),cell(nRepeats,1),'UniformOutput',false);
delete(gcp('nocreate'))
parpool(nRepeats);
parfor r=1:nRepeats
dataDisp=cell(1,2); dataDisp{1}=r;
for s=1:length(datasets)
dataDisp{2} = s; send(dqWorker,dataDisp); % Display progress in parfor
temp=load(['./' datasets{s} '.mat']);
data=temp.data;
X=data(:,1:end-1); y=data(:,end); y=y-mean(y);
X = zscore(X); [N0,M]=size(X);
N=round(N0*.7);
idsTrain=datasample(1:N0,N,'replace',false);
XTrain=X(idsTrain,:); yTrain=y(idsTrain);
XTest=X; XTest(idsTrain,:)=[];
yTest=y; yTest(idsTrain)=[];
% validation data
N1=round(N0*.15);
idsTune=datasample(1:(N0-N),N1,'replace',false);
XTune=XTest(idsTune,:); yTune=yTest(idsTune);
XTest(idsTune,:)=[]; yTest(idsTune)=[];
idsTest=1:N0;idsTest([idsTrain idsTune])=[];
trainInd=idsTrain;
testInd=1:N0;testInd(idsTrain)=[];
valInd=testInd(idsTune);
testInd(idsTune)=[];
MXTrain=mean(XTrain);
XTrain=XTrain-MXTrain; XTune=XTune-MXTrain; XTest=XTest-MXTrain;
nRs0=nRs;
%% 1. Ridge regression
id=1;
b = ridge(yTrain,XTrain,lambda,0);
RMSEtrain{r}(s,id,:) = sqrt(mean((yTrain-[ones(N,1) XTrain]*b).^2));
RMSEtest{r}(s,id,:) = sqrt(mean((yTest-[ones(length(yTest),1) XTest]*b).^2));
for nRules=nRs0
%% Fuzzy C-Means (FCM)
W0=zeros(nRules,M+1); % Rule consequents
[C0,U] = FuzzyCMeans(XTrain,nRules,[2 100 0.001 0]);
Sigma0=C0;
for ir=1:nRules
Sigma0(ir,:)=std(XTrain,U(ir,:));
W0(ir,1)=U(ir,:)*yTrain/sum(U(ir,:));
end
Sigma0(Sigma0==0)=mean(Sigma0(:));
%% FCM_RDpA-alpha
for P=P0
for alpha=alphas
for gammaP=gammaP0
tic;
id=id+1;
[tmp,tmpt]=FCM_RDpA(XTrain,yTrain,{XTune,XTest},{yTune,yTest},alpha,lambda,P,gammaP,nRules,nIt,Nbs,C0,Sigma0,W0);
if min(tmpt{1})<thres{r}(s,id)||~isfinite(thres{r}(s,id))
[thres{r}(s,id),BestmIter{r}(s,id)]=min(tmpt{1});
BestP{r}(s,id)=P;
Bestalpha{r}(s,id)=alpha;
BestgammaP{r}(s,id)=gammaP;
[RMSEtrain{r}(s,id,:),RMSEtune{r}(s,id,:),RMSEtest{r}(s,id,:)]=deal(tmp,tmpt{1},tmpt{2});
end
times{r}(s,id)=toc;
end
end
end
%% FCM_RDpA-P
for P=Ps
for alpha=alpha0
for gammaP=gammaP0
tic;
id=id+1;
[tmp,tmpt]=FCM_RDpA(XTrain,yTrain,{XTune,XTest},{yTune,yTest},alpha,lambda,P,gammaP,nRules,nIt,Nbs,C0,Sigma0,W0);
if min(tmpt{1})<thres{r}(s,id)||~isfinite(thres{r}(s,id))
[thres{r}(s,id),BestmIter{r}(s,id)]=min(tmpt{1});
BestP{r}(s,id)=P;
Bestalpha{r}(s,id)=alpha;
BestgammaP{r}(s,id)=gammaP;
[RMSEtrain{r}(s,id,:),RMSEtune{r}(s,id,:),RMSEtest{r}(s,id,:)]=deal(tmp,tmpt{1},tmpt{2});
end
times{r}(s,id)=toc;
end
end
end
%% FCM_RDpA-gamma
for P=P0
for alpha=alpha0
for gammaP=gammaPs
tic;
id=id+1;
[tmp,tmpt]=FCM_RDpA(XTrain,yTrain,{XTune,XTest},{yTune,yTest},alpha,lambda,P,gammaP,nRules,nIt,Nbs,C0,Sigma0,W0);
if min(tmpt{1})<thres{r}(s,id)||~isfinite(thres{r}(s,id))
[thres{r}(s,id),BestmIter{r}(s,id)]=min(tmpt{1});
BestP{r}(s,id)=P;
Bestalpha{r}(s,id)=alpha;
BestgammaP{r}(s,id)=gammaP;
[RMSEtrain{r}(s,id,:),RMSEtune{r}(s,id,:),RMSEtest{r}(s,id,:)]=deal(tmp,tmpt{1},tmpt{2});
end
times{r}(s,id)=toc;
end
end
end
end
end
end
save('demoPS.mat','RMSEtrain','RMSEtune','RMSEtest','times','BestP','Bestalpha','BestmIter','BestgammaP','datasets','nAlgs','Nbs','LN','lambda','nRepeats','nRs','alphas','Ps','gammaPs','alpha0','P0','gammaP0','thres','LN0','nRs','nIt');
%% Plot results
ids=1:length(LN);
[tmp,ttmp]=deal(nan(length(datasets),length(LN),nRepeats));
for s=1:length(datasets)
ttmp0=cellfun(@(u)squeeze(u(s,ids)),times,'UniformOutput',false);
ttmp(s,ids,:)=cat(1,ttmp0{:})';
for id=1:length(LN)
tmp(s,id,:)=cell2mat(cellfun(@(u,m)squeeze(u(s,id,m(s,id))),RMSEtest,BestmIter,'UniformOutput',false));
end
end
A=[nanmean(nanmean(tmp(:,ids,:),1),3);
nanstd(nanmean(tmp(:,ids,:),1),[],3);
nanmean(nanmean(ttmp(:,ids,:),1),3);
nanstd(nanmean(ttmp(:,ids,:),1),[],3);
nanmean(cat(1,Bestalpha{:}),1);
nanmean(cat(1,BestP{:}),1);
nanmean(cat(1,BestmIter{:}),1)
nanmean(cat(1,thres{:}),1)];
a=squeeze(nanmean(tmp(:,ids,:),3));
a=[a;nanmean(a,1)]; sa=sort(a,2);
b=a==sa(:,1);c=a==sa(:,2);
at=squeeze(nanmean(ttmp(:,ids,:),3));
aa=nanmean(cat(3,Bestalpha{:}),3); aa=[aa;nanmean(aa,1)];
ap=nanmean(cat(3,BestP{:}),3); ap=[ap;nanmean(ap,1)];
am=nanmean(cat(3,BestmIter{:}),3); am=[am;nanmean(am,1)];
avgRMSE=nanmean(nanmean(tmp,1),3);
stdRMSE=nanstd(nanmean(tmp,1),[],3);
[iavgRMSE,istdRMSE,iavgTIME,istdTIME]=deal(nan(length(LN0)+1,length(nRs)));
iavgRMSE(1,:)=repmat(avgRMSE(:,1),1,length(nRs));
istdRMSE(1,:)=repmat(stdRMSE(:,1),1,length(nRs));
for i=2:length(LN0)+1
iavgRMSE(i,:)=avgRMSE(:,i:length(LN0):end);
istdRMSE(i,:)=stdRMSE(:,i:length(LN0):end);
end
avgTIME=nanmean(nanmean(ttmp,1),3);
stdTIME=nanstd(nanmean(ttmp,1),[],3);
iavgTIME(1,:)=repmat(avgTIME(:,1),1,length(nRs));
istdTIME(1,:)=repmat(stdTIME(:,1),1,length(nRs));
for i=2:length(LN0)+1
iavgTIME(i,:)=avgTIME(:,i:length(LN0):end);
istdTIME(i,:)=stdTIME(:,i:length(LN0):end);
end
close all
color={'k','g','b','r','m','c','#0072BD','#D95319','#EDB120','#7E2F8E','#77AC30','#4DBEEE','#A2142F'};
style={'-','--'};
lineStyles=cell(2,length(color)*length(style));
for i=1:length(color)
for j=1:length(style)
lineStyles{1,length(style)*(i-1)+j}=color{i};
lineStyles{2,length(style)*(i-1)+j}=style{j};
end
end
Params={log10(10.^(0:-0.5:-4)),.1:.1:1,.1:.1:1.2};
Rs={'R=2','R=4','R=8','R=16','R=32','R=64'};
name={'a','b','c'};
for flag=1:3
switch flag
case 1
idM=1:9;
case 2
idM=10:19;
case 3
idM=20:31;
end
f=mat2cell(permute(tmp(:,idM+(1:31:size(tmp,2)-31)',:),[3,2,1]),ones(1,nRepeats));
f=cellfun(@(x)permute(x,[2,3,1]),f,'UniformOutput',false);
RR=mat2cell(permute(tmp(:,1,:),[3,2,1]),ones(1,nRepeats));
RR=cellfun(@(x)permute(x,[2,3,1]),RR,'UniformOutput',false);
fR=cellfun(@(x,y)reshape(nanmean(x./y,2),[],length(idM)),f,RR,'UniformOutput',false);
fR=cat(3,fR{:});
savgRMSE=nanmean(fR,3);
sstdRMSE=nanstd(fR,[],3);
figure;
set(gcf,'DefaulttextFontName','times new roman','DefaultaxesFontName','times new roman','defaultaxesfontsize',10);
hold on;
switch flag
case 1
for i=1:length(nRs)
errorbar(1:length(idM), flip(savgRMSE(i,:)),flip(sstdRMSE(i,:)),'Color',lineStyles{1,2*i-1},'LineStyle',lineStyles{2,2*i-1},'linewidth',2);
end
set(gca,'XTick',1:1:length(idM),'XTickLabel',flip(Params{flag}));
xlabel('$\log_{10}\alpha$','interpreter','latex','fontsize',12);
case {2,3}
for i=1:length(nRs)
errorbar(1:length(idM), savgRMSE(i,:),sstdRMSE(i,:),'Color',lineStyles{1,2*i-1},'LineStyle',lineStyles{2,2*i-1},'linewidth',2);
end
set(gca,'XTick',1:1:length(idM),'XTickLabel',Params{flag});
switch flag
case 2
xlabel('$P$','interpreter','latex','fontsize',12);
case 3
xlabel('$\gamma$','interpreter','latex','fontsize',12);
end
end
legend(Rs,'FontSize',10,'interpreter','latex','NumColumns',1,'Location','eastoutside');
legend('boxoff')
ylabel('Average normalized test RMSE');
set(gca,'yscale','log');
box on; axis tight;
end