-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_svhnmnist.py
198 lines (183 loc) · 9.07 KB
/
train_svhnmnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from data_list import ImageList
import os
import os.path as osp
from torch.autograd import Variable
import loss as loss_func
import numpy as np
import network
from tqdm import tqdm
from evaluate import Inspector
def train(args, model, ad_net, train_loader, train_loader1, optimizer, optimizer_ad, epoch, start_epoch, method):
model.train()
len_source = len(train_loader)
len_target = len(train_loader1)
if len_source > len_target:
num_iter = len_source
else:
num_iter = len_target
args.log_interval = num_iter
loss_value = 0
loss_target_value = 0
for batch_idx in tqdm(range(num_iter), total=num_iter):
if batch_idx % len_source == 0:
iter_source = iter(train_loader)
if batch_idx % len_target == 0:
iter_target = iter(train_loader1)
data_source, label_source = iter_source.next()
data_source, label_source = data_source.cuda(), label_source.cuda()
data_target, label_target = iter_target.next()
data_target = data_target.cuda()
optimizer.zero_grad()
optimizer_ad.zero_grad()
feature, output = model(torch.cat((data_source, data_target), 0))
classifier_loss = nn.CrossEntropyLoss()(output.narrow(0, 0, data_source.size(0)), label_source)
softmax_output = nn.Softmax(dim=1)(output)
if epoch > start_epoch:
if method == 'DANN':
transfer_loss = loss_func.DANN(feature, ad_net)
elif method == "ALDA":
ad_out = ad_net(feature)
if label_source.size(0) != ad_out.size(0)//2:
continue
adv_loss, reg_loss, correct_loss = loss_func.ALDA_loss(ad_out, label_source, softmax_output,
weight_type=1, threshold=args.threshold)
# whether add the corrected self-training loss
if "nocorrect" in args.loss_type:
transfer_loss = adv_loss
else:
transfer_loss = adv_loss + correct_loss
# reg_loss is only backward to the discriminator
if "noreg" not in args.loss_type:
for param in model.parameters():
param.requires_grad = False
reg_loss.backward(retain_graph=True)
for param in model.parameters():
param.requires_grad = True
else:
raise ValueError('Method cannot be recognized.')
loss_target_value += transfer_loss.item() / args.log_interval
else:
transfer_loss = 0
loss = transfer_loss + classifier_loss
loss.backward()
optimizer.step()
loss_value += classifier_loss.item() / args.log_interval
if epoch > start_epoch:
optimizer_ad.step()
if batch_idx % args.log_interval == args.log_interval - 1:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx*args.batch_size, num_iter*args.batch_size,
100. * batch_idx / num_iter, loss.item()))
print("transfer_loss: {:.3f} classifier_loss: {:.3f}".format(loss_target_value, loss_value))
loss_value = 0
loss_target_value = 0
def test(args, model, test_loader):
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
feature, output = model(data)
test_loss += nn.CrossEntropyLoss()(output, target).item()
pred = output.data.cpu().max(1, keepdim=True)[1]
correct += pred.eq(target.data.cpu().view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.1f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Unsupported value encountered.')
parser = argparse.ArgumentParser(description='ALDA SVHN2MNIST')
parser.add_argument('method', type=str, default='ALDA', choices=['DANN', "ALDA"])
parser.add_argument('--task', default='SVHN2MNIST', help='task to perform')
parser.add_argument('--batch_size', type=int, default=64,
help='input batch size for training (default: 64)')
parser.add_argument('--test_batch_size', type=int, default=200,
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=2e-4, metavar='LR')
parser.add_argument('--gpu_id', type=str, default=0,
help='cuda device id')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log_interval', type=int, default=1000,
help='how many batches to wait before logging training status')
parser.add_argument('--trade_off', type=float, default=1.0, help="trade_off")
parser.add_argument('--start_epoch', type=int, default=0, help="begin adaptation after start_epoch")
parser.add_argument('--threshold', default=0.9, type=float, help="threshold of pseudo labels")
parser.add_argument('--output_dir', type=str, default=None, help="output directory of our model (in ../snapshot directory)")
parser.add_argument('--loss_type', type=str, default='all', help="whether add reg_loss or correct_loss.")
parser.add_argument('--cos_dist', type=str2bool, default=False, help="the classifier uses cosine similarity.")
parser.add_argument('--num_worker', type=int, default=4)
args = parser.parse_args()
torch.manual_seed(args.seed)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
source_list = './data/svhn2mnist/svhn_balanced.txt'
target_list = './data/svhn2mnist/mnist_train.txt'
test_list = './data/svhn2mnist/mnist_test.txt'
source_list = open(source_list).readlines()
target_list = open(target_list).readlines()
test_list = open(test_list).readlines()
train_loader = torch.utils.data.DataLoader(
ImageList(source_list, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]), mode='RGB'),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_worker, drop_last=True, pin_memory=True)
train_loader1 = torch.utils.data.DataLoader(
ImageList(target_list, transform=transforms.Compose([
transforms.Resize((32,32)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]), mode='RGB'),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_worker, drop_last=True, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
ImageList(test_list, transform=transforms.Compose([
transforms.Resize((32,32)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]), mode='RGB'),
batch_size=args.test_batch_size, shuffle=False, num_workers=args.num_worker, pin_memory=True)
model = network.SVHN_EnsembNet()
model = model.cuda()
class_num = 10
if args.method == "ALDA":
ad_net = network.Multi_AdversarialNetwork(model.output_num(), 500, class_num)
elif args.method == "DANN":
ad_net = network.AdversarialNetwork(model.output_num(), 500)
ad_net = ad_net.cuda()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=0.0005)
optimizer_ad = optim.Adam(ad_net.parameters(), lr=args.lr, weight_decay=0.0005)
start_epoch = args.start_epoch
if args.output_dir is None:
args.output_dir = args.task.lower() +'_'+ args.method
output_path = "snapshot/" + args.output_dir
if os.path.exists(output_path):
print("checkpoint dir exists, which will be removed")
import shutil
shutil.rmtree(output_path, ignore_errors=True)
os.mkdir(output_path)
for epoch in range(1, args.epochs + 1):
if epoch % 3 == 0:
for param_group in optimizer.param_groups:
param_group["lr"] = param_group["lr"] * 0.3
train(args, model, ad_net, train_loader, train_loader1, optimizer, optimizer_ad, epoch, start_epoch, args.method)
test(args, model, test_loader)
if epoch % 5 == 1:
torch.save(model.state_dict(), osp.join(output_path, "epoch_{}.pth".format(epoch)))
if __name__ == '__main__':
main()