-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMachine Learning.html
executable file
·565 lines (388 loc) · 17 KB
/
Machine Learning.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
<!doctype html>
<html class="no-js" lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>
Machine Learning - 雪地
</title>
<link href="atom.xml" rel="alternate" title="雪地" type="application/atom+xml">
<link rel="stylesheet" href="asset/css/foundation.min.css" />
<link rel="stylesheet" href="asset/css/docs.css" />
<link rel="icon" href="asset/img/favicon.ico" />
<script src="asset/js/vendor/modernizr.js"></script>
<script src="asset/js/vendor/jquery.js"></script>
<script src="asset/highlightjs/highlight.pack.js"></script>
<link href="asset/highlightjs/styles/github.css" media="screen, projection" rel="stylesheet" type="text/css">
<script>hljs.initHighlightingOnLoad();</script>
<script type="text/javascript">
function before_search(){
var searchVal = 'site:yinzo.github.io ' + document.getElementById('search_input').value;
document.getElementById('search_q').value = searchVal;
return true;
}
</script>
</head>
<body class="antialiased hide-extras">
<div class="marketing off-canvas-wrap" data-offcanvas>
<div class="inner-wrap">
<nav class="top-bar docs-bar hide-for-small" data-topbar>
<section class="top-bar-section">
<div class="row">
<div style="position: relative;width:100%;"><div style="position: absolute; width:100%;">
<ul id="main-menu" class="left">
<li id="menu_item_index"><a href="index.html">Blog</a></li>
<li id="menu_item_archives"><a href="archives.html">Archives</a></li>
<li id="menu_item_about"><a href="http://yinz.xyz/">Home</a></li>
</ul>
<ul class="right" id="search-wrap">
<li>
<form target="_blank" onsubmit="return before_search();" action="http://google.com/search" method="get">
<input type="hidden" id="search_q" name="q" value="" />
<input tabindex="1" type="search" id="search_input" placeholder="Search"/>
</form>
</li>
</ul>
</div></div>
</div>
</section>
</nav>
<nav class="tab-bar show-for-small">
<a href="javascript:void(0)" class="left-off-canvas-toggle menu-icon">
<span> 雪地</span>
</a>
</nav>
<aside class="left-off-canvas-menu">
<ul class="off-canvas-list">
<li><a href="index.html">Blog</a></li>
<li><a href="archives.html">Archives</a></li>
<li><a href="http://yinz.xyz/">Home</a></li>
<li><label>Categories</label></li>
<li><a href="Security%20Info.html">Security Info</a></li>
<li><a href="Adversary%20Learning.html">Adversary Learning</a></li>
<li><a href="TCPIP.html">TCP/IP</a></li>
<li><a href="Pattern%20Recognition.html">Pattern Recognition</a></li>
<li><a href="Python.html">Python</a></li>
<li><a href="OS.html">OS</a></li>
<li><a href="Deep%20Learning.html">Deep Learning</a></li>
<li><a href="Machine%20Learning.html">Machine Learning</a></li>
</ul>
</aside>
<a class="exit-off-canvas" href="#"></a>
<section id="main-content" role="main" class="scroll-container">
<script type="text/javascript">
$(function(){
$('#menu_item_index').addClass('is_active');
});
</script>
<div class="row">
<div class="large-8 medium-8 columns">
<div class="markdown-body home-categories">
<div class="article">
<a class="clearlink" href="14968173531750.html">
<h1>CS229 学习笔记 Part3</h1>
<div class="a-content">
<div class="a-content-text">
<ul>
<li>
<a href="#toc_0">SVM</a>
<ul>
<li>
<a href="#toc_1">函数间隔和几何间隔 (Functional and geometric margin)</a>
</li>
<li>
<a href="#toc_2">最优间隔分类器 (Optimal margin classifier)</a>
</li>
<li>
<a href="#toc_3">拉格朗日对偶问题</a>
<ul>
<li>
<a href="#toc_4">原始问题</a>
</li>
<li>
<a href="#toc_5">对偶问题</a>
</li>
<li>
<a href="#toc_6">KKT 条件</a>
</li>
</ul>
</li>
<li>
<a href="#toc_7">回到最优间隔分类器问题</a>
</li>
<li>
<a href="#toc_8">核 (Kernels)</a>
</li>
<li>
<a href="#toc_9">正则化</a>
</li>
<li>
<a href="#toc_10">SMO 算法</a>
<ul>
<li>
<a href="#toc_11">坐标上升算法 (Coordinate ascent)</a>
</li>
<li>
<a href="#toc_12">SMO</a>
</li>
</ul>
</li>
</ul>
</li>
</ul>
<h2 id="toc_0">SVM</h2>
<p>CS229 对于 SVM 的理论解释是我学习到的最详细也是最好的一份资料了,对比对象有周志华《机器学习》、《机器学习实战》、Coursera 上的 Machine Learning 等。相当推荐学习 CS229。</p>
<p>分类间隔 (Margin) 和 SVM 的优化目标『最大化分类间隔』这里就不多说了,很好理解,主要还是记录 CS229 中学到的新内容。一个数据点离分类边界 (decision boundary) 越远,则确信度越高。我们的优化目标也相当于寻找一个远离所有数据点的分类边界,当然,前提是这个分类边界得到的分类都正确。</p>
<p>SVM 的一些特殊定义也提及一下,</p>
<ul>
<li>\(y\) 的取值不是 \(\{0,1\}\) 而是 \(\{-1,1\}\)。</li>
<li>假设函数 \(h_{w,b}(x) = g(w^Tx+b)\) 中,我们把截距项单独写出来,便与后续的计算。</li>
<li>我们的分类器输出结果会直接是 1 或 -1,不像 Logistic 回归那样先输出 \(y\) 是某一类的概率。</li>
</ul>
</div>
</div>
</a>
<div class="read-more clearfix">
<div class="more-left left">
<a href="14968173531750.html">Read more</a>
<span class="date">2017/6/7 14:35 下午</span>
<span>posted in </span>
<span class="posted-in"><a href='Machine%20Learning.html'>Machine Learning</a></span>
</div>
<div class="more-right right">
<span class="comments">
</span>
</div>
</div>
</div><!-- article -->
<div class="article">
<a class="clearlink" href="14965964854250.html">
<h1>CS229 学习笔记 Part2</h1>
<div class="a-content">
<div class="a-content-text">
<ul>
<li>
<a href="#toc_0">判别式和生成式</a>
<ul>
<li>
<a href="#toc_1">判别式</a>
</li>
<li>
<a href="#toc_2">生成式</a>
</li>
</ul>
</li>
<li>
<a href="#toc_3">Gaussian discriminant analysis</a>
</li>
<li>
<a href="#toc_4">讨论:GDA 和 Logistic 回归</a>
</li>
<li>
<a href="#toc_5">朴素贝叶斯</a>
<ul>
<li>
<a href="#toc_6">拉普拉斯平滑</a>
</li>
<li>
<a href="#toc_7">用于文本分类的事件模型</a>
</li>
</ul>
</li>
</ul>
<h2 id="toc_0">判别式和生成式</h2>
<p>对于一个分类任务,判别式和生成式分别代表了两种不同的思路:</p>
<h3 id="toc_1">判别式</h3>
<p>通过直接从输入数据中学习,得到一个『特定输入对应的实际类别』的概率模型,模型的参数为 \(\theta\) 。即学习建模 \(p(y\mid x)\)</p>
<h3 id="toc_2">生成式</h3>
<p>通过对每一个类进行建模,然后就可以通过条件概率算出输入的数据更可能由哪一类生成。即学习建模 \(p(x\mid y)\) 和 \(p(y)\) ,然后计算 \[\arg\max\limits_y\frac{p(x \mid y)p(y)}{p(x)}\]</p>
<p>并且实际计算中,分母 \(p(x)\) 并不会影响各个类别概率的排序,所以最终简化成 \[\arg\max\limits_y p(x \mid y)p(y)\]</p>
</div>
</div>
</a>
<div class="read-more clearfix">
<div class="more-left left">
<a href="14965964854250.html">Read more</a>
<span class="date">2017/6/5 1:14 上午</span>
<span>posted in </span>
<span class="posted-in"><a href='Machine%20Learning.html'>Machine Learning</a></span>
</div>
<div class="more-right right">
<span class="comments">
</span>
</div>
</div>
</div><!-- article -->
<div class="article">
<a class="clearlink" href="14946020792948.html">
<h1>CS229 学习笔记 Part 1</h1>
<div class="a-content">
<div class="a-content-text">
<p>此笔记为我的 CS229 的学习笔记之一,由 Andrew Ng 的 CS229 Lecture notes 和 课堂录像整理而来。用于记录所学到的内容。记录顺序重新编排过,并非是课程原本的教学顺序,并且省略了课程中的一些推导过程,所以适合学习后整理备忘使用,不适合用于同步辅助学习。</p>
<ul>
<li>
<a href="#toc_0">广义线性模型 GLM (Generalized Linear Models)</a>
<ul>
<li>
<a href="#toc_1">具体步骤</a>
</li>
</ul>
</li>
<li>
<a href="#toc_2">优化方法</a>
<ul>
<li>
<a href="#toc_3">梯度下降法</a>
</li>
<li>
<a href="#toc_4">牛顿法</a>
</li>
</ul>
</li>
<li>
<a href="#toc_5">Linear Regression</a>
<ul>
<li>
<a href="#toc_6">Locally weighted linear regression</a>
</li>
</ul>
</li>
</ul>
<h2 id="toc_0">广义线性模型 GLM (Generalized Linear Models)</h2>
<p>广义线性模型是所学到的 Linear Regression 以及 Logistic Regression 的推广形式(更准确的说,这两种模型都属于 GLM 的特殊情况)。它有三个关键假设(Assumptions)构成:</p>
<ol>
<li>\(y \mid x;\theta\sim ExponentialFamily(\eta)\) :对于固定的参数 \(\theta\) 以及给定 \(x\), \(y\) 的分布服从某一指数分布族(如高斯分布、伯努利分布、Softmax分布)</li>
<li>对于给定的 \(x\) ,目标是预测 \(T(y)\) 的值。换一种说法就是,我们定义假设函数 \(h(x) = E[y\mid x]\)</li>
<li>natural parameter \(\eta\) 和 输入 \(x\) 是线性相关的, \(\eta = \theta^ \mathrm{ T } x\) (其中,当输入 \(x\) 和 \(\eta\) 是向量的时候, \(\eta_i = \theta_i^ \mathrm{T}x\))</li>
</ol>
</div>
</div>
</a>
<div class="read-more clearfix">
<div class="more-left left">
<a href="14946020792948.html">Read more</a>
<span class="date">2017/5/12 23:14 下午</span>
<span>posted in </span>
<span class="posted-in"><a href='Machine%20Learning.html'>Machine Learning</a></span>
</div>
<div class="more-right right">
<span class="comments">
</span>
</div>
</div>
</div><!-- article -->
<div class="row">
<div class="large-6 columns">
<p class="text-left" style="padding-top:25px;">
</p>
</div>
<div class="large-6 columns">
<p class="text-right" style="padding-top:25px;">
</p>
</div>
</div>
</div>
</div><!-- large 8 -->
<div class="large-4 medium-4 columns">
<div class="hide-for-small">
<div id="sidebar" class="sidebar">
<div id="site-info" class="site-info">
<div class="site-a-logo"><img src="asset/img/3.png" /></div>
<h1>雪地</h1>
<div class="site-des"></div>
<div class="social">
<a class="github" target="_blank" href="https://github.com/Yinzo" title="GitHub">GitHub</a>
<a class="email" href="mailto:[email protected]" title="Email">Email</a>
<a class="rss" href="atom.xml" title="RSS">RSS</a>
</div>
</div>
<div id="site-categories" class="side-item ">
<div class="side-header">
<h2>Categories</h2>
</div>
<div class="side-content">
<p class="cat-list">
<a href="Security%20Info.html"><strong>Security Info</strong></a>
<a href="Adversary%20Learning.html"><strong>Adversary Learning</strong></a>
<a href="TCPIP.html"><strong>TCP/IP</strong></a>
<a href="Pattern%20Recognition.html"><strong>Pattern Recognition</strong></a>
<a href="Python.html"><strong>Python</strong></a>
<a href="OS.html"><strong>OS</strong></a>
<a href="Deep%20Learning.html"><strong>Deep Learning</strong></a>
<a href="Machine%20Learning.html"><strong>Machine Learning</strong></a>
</p>
</div>
</div>
<div id="site-categories" class="side-item">
<div class="side-header">
<h2>Recent Posts</h2>
</div>
<div class="side-content">
<ul class="posts-list">
<li class="post">
<a href="14968173531750.html">CS229 学习笔记 Part3</a>
</li>
<li class="post">
<a href="14965964854250.html">CS229 学习笔记 Part2</a>
</li>
<li class="post">
<a href="14946020792948.html">CS229 学习笔记 Part 1</a>
</li>
<li class="post">
<a href="14883590547961.html">原始模型优化笔记</a>
</li>
<li class="post">
<a href="14863637393852.html">低素质弹幕分类器的CNN实现</a>
</li>
</ul>
</div>
</div>
<div id="site-link" class="side-item">
<div class="side-header">
<h2>Link</h2>
</div>
<div class="side-content">
<p class="link-list">
<a href="http://blog.winkidney.com/">阿毛</a>
</p>
</div>
</div>
</div><!-- sidebar -->
</div><!-- hide for small -->
</div><!-- large 4 -->
</div><!-- row -->
<div class="page-bottom clearfix">
<div class="row">
<p class="copyright">Copyright © 2016
Powered by <a target="_blank" href="http://www.mweb.im">MWeb</a>,
Theme used <a target="_blank" href="http://github.com">GitHub CSS</a>.
Modified by <a target="_blank" href="http://yinz.xyz">Yinzo</a>.</p>
</div>
</div>
</section>
</div>
</div>
<script src="asset/js/foundation.min.js"></script>
<script>
$(document).foundation();
function fixSidebarHeight(){
var w1 = $('.markdown-body').height();
var w2 = $('#sidebar').height();
if (w1 > w2) { $('#sidebar').height(w1); };
}
$(function(){
fixSidebarHeight();
})
$(window).load(function(){
fixSidebarHeight();
});
</script>
<script src="asset/chart/all-min.js"></script><script type="text/javascript">$(function(){ var mwebii=0; var mwebChartEleId = 'mweb-chart-ele-'; $('pre>code').each(function(){ mwebii++; var eleiid = mwebChartEleId+mwebii; if($(this).hasClass('language-sequence')){ var ele = $(this).addClass('nohighlight').parent(); $('<div id="'+eleiid+'"></div>').insertAfter(ele); ele.hide(); var diagram = Diagram.parse($(this).text()); diagram.drawSVG(eleiid,{theme: 'simple'}); }else if($(this).hasClass('language-flow')){ var ele = $(this).addClass('nohighlight').parent(); $('<div id="'+eleiid+'"></div>').insertAfter(ele); ele.hide(); var diagram = flowchart.parse($(this).text()); diagram.drawSVG(eleiid); } });});</script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script type="text/x-mathjax-config">MathJax.Hub.Config({TeX: { equationNumbers: { autoNumber: "AMS" } }});</script>
<script src="asset/js/instantclick.min.js" data-no-instant></script>
<script data-no-instant>InstantClick.on('change', function() {
MathJax.Hub.Queue(["Typeset",MathJax.Hub]);
});</script>
<script data-no-instant>InstantClick.init();</script>
</body>
</html>