forked from ShaoqingRen/SPP_net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspp_test.m
209 lines (184 loc) · 6.07 KB
/
spp_test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
function res = spp_test(spp_model, imdb, roidb, feat_cache, suffix, fast, evaluate)
% res = spp_test(spp_model, imdb, roidb, feat_cache, suffix, fast, evaluate)
% Compute test results using the trained spp_model on the
% image database specified by imdb. Results are saved
% with an optional suffix.
%
% Adapted from spp code written by Ross Girshick
% AUTORIGHTS
% ---------------------------------------------------------
% Copyright (c) 2014, Shaoqing Ren
%
% This file is part of the SPP code and is available
% under the terms of the Simplified BSD License provided in
% LICENSE. Please retain this notice and LICENSE if you use
% this file (or any portion of it) in your project.
% ---------------------------------------------------------
% Copyright (c) 2014, Ross Girshick
%
% This file is part of the R-CNN code and is available
% under the terms of the Simplified BSD License provided in
% LICENSE. Please retain this notice and LICENSE if you use
% this file (or any portion of it) in your project.
% ---------------------------------------------------------
if nargin < 5
suffix = '';
end
if nargin < 6
fast = false;
end
if nargin < 7
evaluate = true;
end
t_start = tic();
conf = spp_config('sub_dir', fullfile(spp_model.cache_name, imdb.name));
image_ids = imdb.image_ids;
% assume they are all the same
feat_opts = spp_model.training_opts;
feat_opts.feat_cache = feat_cache;
num_classes = length(spp_model.classes);
rois = roidb.rois;
if conf.use_gpu
spp_model.cnn.layers = spp_layers_in_gpu(spp_model.cnn.layers);
end
if ~exist('suffix', 'var') || isempty(suffix)
suffix = '';
else
suffix = ['_' suffix];
end
try
aboxes = cell(num_classes, 1);
for i = 1:num_classes
load([conf.cache_dir spp_model.classes{i} '_boxes_' imdb.name suffix]);
aboxes{i} = boxes;
end
catch
aboxes = cell(num_classes, 1);
box_inds = cell(num_classes, 1);
for i = 1:num_classes
aboxes{i} = cell(length(image_ids), 1);
box_inds{i} = cell(length(image_ids), 1);
end
max_per_set = 5 * length(image_ids);
max_per_image = 100;
top_scores = cell(num_classes, 1);
thresh = -1.5*ones(num_classes, 1);
if ~isfield(spp_model, 'folds')
folds{1} = 1:length(image_ids);
else
folds = spp_model.folds;
end
count = 0;
for f = 1:length(folds)
for i = folds{f}
count = count + 1;
fprintf('%s: test (%s) %d/%d ', procid(), imdb.name, count, length(image_ids));
th = tic;
d = rois(i);
d.feat = spp_load_cached_poolX_features(spp_model.spp_pooler, feat_opts.feat_cache, ...
imdb.name, image_ids{i}, d.boxes);
if isempty(d.feat)
continue;
end
d.feat = spp_poolX_to_fcX(d.feat, feat_opts.layer, spp_model, conf.use_gpu);
d.feat = spp_scale_features(d.feat, feat_opts.feat_norm_mean);
zs = bsxfun(@plus, spp_model.detectors(f).W * d.feat, spp_model.detectors(f).B)';
for j = 1:num_classes
boxes = d.boxes;
scores = zs(:,j);
I = find(~d.gt & scores > thresh(j));
keep = nms(cat(2, single(boxes(I,:)), single(scores(I))), 0.3);
I = I(keep);
if ~isempty(I)
[~, ord] = sort(scores(I), 'descend');
ord = ord(1:min(length(ord), max_per_image));
I = I(ord);
boxes = boxes(I,:);
scores = scores(I);
aboxes{j}{i} = cat(2, single(boxes), single(scores));
box_inds{j}{i} = I;
else
aboxes{j}{i} = zeros(0, 5, 'single');
box_inds{j}{i} = [];
end
end
if mod(count, 1000) == 0
[aboxes{j}, box_inds{j}, thresh(j)] = ...
keep_top_k(aboxes{j}, box_inds{j}, i, max_per_set, thresh(j));
end
fprintf(' time: %.3fs\n', toc(th));
if mod(count, 1000) == 0
disp(thresh);
end
end
end
for i = 1:num_classes
top_scores{i} = sort(top_scores{i}, 'descend');
if (length(top_scores{i}) > max_per_set)
thresh(i) = top_scores{i}(max_per_set);
end
% go back through and prune out detections below the found threshold
for j = 1:length(image_ids)
if ~isempty(aboxes{i}{j})
I = find(aboxes{i}{j}(:,end) < thresh(i));
aboxes{i}{j}(I,:) = [];
box_inds{i}{j}(I,:) = [];
end
end
save_file = [conf.cache_dir spp_model.classes{i} '_boxes_' imdb.name suffix];
boxes = aboxes{i};
inds = box_inds{i};
save(save_file, 'boxes', 'inds');
clear boxes inds;
end
end
fprintf('spp_test_spm in %f seconds.\n', toc(t_start));
% ------------------------------------------------------------------------
% Peform AP evaluation
% ------------------------------------------------------------------------
if ~evaluate
res = [];
return;
end
if isequal(imdb.eval_func, @imdb_eval_voc)
if fast
classes = spp_model.classes;
cache_name = spp_model.cache_name;
parfor model_ind = 1:num_classes
cls = classes{model_ind};
res(model_ind) = imdb.eval_func(cls, aboxes{model_ind}, imdb, cache_name, suffix, fast);
end
else
for model_ind = 1:num_classes
cls = spp_model.classes{model_ind};
res(model_ind) = imdb.eval_func(cls, aboxes{model_ind}, imdb, spp_model.cache_name, suffix, fast);
end
end
else
% ilsvrc
res = imdb.eval_func(aboxes, imdb, spp_model.cache_name, suffix, fast);
end
if ~isempty(res)
fprintf('\n~~~~~~~~~~~~~~~~~~~~\n');
fprintf('Results:\n');
aps = [res(:).ap]' * 100;
disp(aps);
disp(mean(aps));
fprintf('~~~~~~~~~~~~~~~~~~~~\n');
end
% ------------------------------------------------------------------------
function [boxes, box_inds, thresh] = keep_top_k(boxes, box_inds, end_at, top_k, thresh)
% ------------------------------------------------------------------------
% Keep top K
X = cat(1, boxes{1:end_at});
if isempty(X)
return;
end
scores = sort(X(:,end), 'descend');
thresh = scores(min(length(scores), top_k));
for image_index = 1:end_at
bbox = boxes{image_index};
keep = find(bbox(:,end) >= thresh);
boxes{image_index} = bbox(keep,:);
box_inds{image_index} = box_inds{image_index}(keep);
end