-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImageProcessing.py
128 lines (95 loc) · 4.54 KB
/
ImageProcessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""
This class is used as a layer between OpenCV and CoffeeMachine.
"""
import cv2
import numpy
class ImageProcessing:
min_YCrCb = numpy.array([0,133,77],numpy.uint8)
max_YCrCb = numpy.array([255,173,127],numpy.uint8)
PATH_FACE = 'classifiers/haarcascade_frontalface_default.xml'
PATH_SMILE = 'classifiers/smile.xml'
def __init__(self):
self.camera = cv2.VideoCapture(0)
self.colors = color_pack
# read a frame from video stream using by cv2.videoCapture() and return it.
def catch_frame(self, flip = False):
if not self.camera.isOpened():
raise Exception('Camera is not opened')
ret, frame = self.camera.read()
if flip:
frame = cv2.flip(frame, 1)
return frame
# loads cascade classifiers in classifiers directory and put them in a dictionary.
def load_calissifiers(self):
face_cascade = cv2.CascadeClassifier(PATH_FACE)
smile_cascade = cv2.CascadeClassifier(PATH_SMILE)
self.cascades = {}
cascades['face'] = face_cascade
cascades['smile'] = smile_cascade
# invoke classify for given image
def classify(self, classifier, img, scale_factor=1.1, min_neighbour=3):
cascade = dict[classifier]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
detected_objects = cascade.detectMultiScale(gray, scaleFactor, minNeighbour)
return detected_objects
# defines colors and returns their color spaces in RGB.
def color_pack(self):
colors={}
colors['red'] = (0, 0, 255)
colors['blue'] = (255, 0, 0)
colors['green'] = (0, 255, 0)
colors['yellow'] = (0, 255, 255)
colors['black'] = (0, 0, 0)
colors['white'] = (255, 255, 255)
colors['orange'] = (0, 165, 255)
return colors
# dilation, blurred, masking etc..
def threshold(self, frame):
YCrCb = cv2.cvtColor(frame, cv2.COLOR_BGR2YCR_CB)
blurred = cv2.medianBlur(YCrCb, 5)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
dilated = cv2.dilate(blurred, kernel)
# using mask with pre-defined constants
skin = cv2.inRange(dilated, self.min_YCrCb, self.max_YCrCb)
return skin
# find all contours and sort them in order to size of its area. If classifier is not optional
# cascade get invokes and detecting objects will be extracted from contours. Function returns
# contours and detecting objects.
def find_contours(self, frame, classifier=None):
_, contours, hierarchy = cv2.findContours(frame, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# sort contours in order to size of its area
contours.sort(key=lambda contour: cv2.contourArea(contour))
# if a classifier is given, invoke classifier and if an object detects in an any contour
# extract the contour in contours list and put it an another list (the list would be
# usefull for the future)
# this implemantation can be changed in future.
detected_objects = []
if classifier is not None:
for i in range(len(contours)):
cnt = contours[i]
x, y, w, h = cv2.boundingRect(cnt)
contour_area = frame[y:y+h, x:x+w]
faces = classify('face')
for face in faces:
draw_rectangle(frame, (x,y,w,h))
f = list.pop(i)
detected_objects.append(f)
return contours, detected_objects
# find convex hull for given contour
def find_hull(self, contour):
hull = cv2.convexHull(contour)
# cv2.drawContours(sourceImage, [hull], -1, (0, 0, 255), 2)
#drawings
def draw_contours(self, frame, contours, number_of_cnt=-1, color=None, thickness=2):
if number_of_cnt is -1:
cv2.drawContours(frame, contours, -1, self.colors['red'] if color is None else self.colors[color], thickness)
else:
for i in range(number_of_cnt):
cv2.drawContours(frame, contours, i, self.colors['red'] if color is None else self.colors[color], thickness)
def draw_hull(self, frame, hull, color=None, thickness=1):
draw_contours(frame, [hull], -1, color, thickness)
def draw_rectangle(self, frame, rect, color=None, thickness=2):
for x,y,w,h in rect:
cv2.rectangle(frame, (x, y), (x+w, y+h), self.colors['red'] if color is None else self.colors[color], thickness)
# sources:
# https://github.com/seereality/opencvDemos/blob/master/skinDetect.py