-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3-pca.py
53 lines (41 loc) · 1.73 KB
/
3-pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
import seaborn as sns
def load_data(data_file_path):
# using breast cancer WIS consin dataset
data = pd.read_csv(data_file_path,
usecols=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
names=["clump_thickness", "uniformity_of_cell_size", "uniformity_of_cell_shape",
"marginal_adhesion", "single_epi_cell_size", "bare_nuclei", "bland_chro",
"normal_nucleoli", "mitoses", "class"])
data["class"] = data["class"].replace({2: "benign", 4: "malignant"})
# add all features to X matrix
# add all outputs vector Y
x = data.iloc[:, 0:9]
y = data.loc[:, "class"]
x_normalized = StandardScaler().fit_transform(x)
return x_normalized, y
def create_covariance_matrix(x):
covariance_matrix = np.cov(x.T)
return covariance_matrix
def pca(covariance_matrix, x, y):
# get eigenvectors and eigenvalues from the covariance matrix
eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)
# calculate explained variance percentage for each eigenvector
explained_variances = []
eigenvalues_sum = np.sum(eigenvalues)
for index in range(len(eigenvalues)):
explained_variances.append(eigenvalues[index] / eigenvalues_sum)
print(explained_variances)
pc1 = x.dot(eigenvectors.T[0])
pc2 = x.dot(eigenvectors.T[1])
df = pd.DataFrame(pc1, columns=["PC1"])
df["PC2"] = pc2
df['y'] = y
sns.scatterplot(data=df, x="PC1", y="PC2", hue="y")
plt.show()
x, y = load_data('./data/breast-cancer-wisconsin.data')
cov_matrix = create_covariance_matrix(x)
pca(cov_matrix, x, y)