-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcam1and3.py
472 lines (329 loc) · 16.5 KB
/
cam1and3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import cv2 as cv
import cv2.aruco as aruco
import numpy as np
import os
import glob
from tqdm import tqdm
from matplotlib import pyplot as plt
from typing import List, Callable
# HELPER METHODS FROM OTHER FILES
from test_functions import detectAruco
# NOTE: several tutorials were followed, credited, and adapted into this codebase, namely:
# https://docs.opencv.org/master/d3/d81/tutorial_contrib_root.html
# https://www.andreasjakl.com/understand-and-apply-stereo-rectification-for-depth-maps-part-2/
# https://medium.com/analytics-vidhya/camera-calibration-with-opencv-f324679c6eb7
# cameras 1 & 3 setup paths
img_path_cam1 = glob.glob('./calibimgs_cam1_NEW2/*')
img_path_cam3 = glob.glob('./calibimgs_cam3_NEW2/*')
#---------------------------------------------------------- Camera Calibration ----------------------------------------------------------#
print("======== PHASE 1: CAMERA CALIBRATION ========")
# -------------------- CAMERA 1 CALIBRATION--------------------#
print("======== PHASE 1.1: CAMERA 1 CALIBRATION ========")
# Define size of chessboard target.
chessboard_size = (9 ,6)
# Define arrays to save detected points
obj_points_cam1 = [] # 3D points in real world space
img_points_cam1 = [] # 3D points in image plane
# Prepare grid and points to display
# Defining the world coordinates for 3D points
objp_cam1 = np.zeros((np.prod(chessboard_size) ,3) ,dtype=np.float32)
objp_cam1[: ,:2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1 ,2)
# read images
calibration_paths_cam1 = glob.glob('./calibimgs_cam1_NEW2/*')
# Iterate over images to find intrinsic matrix
# NOTE: Tqdm is a Python library used to display smart progress bars that show the progress of Python code execution (helpful for calibration phase)
for image_path_cam1 in tqdm(calibration_paths_cam1):
# Load image
image_cam1 = cv.imread(image_path_cam1)
gray_image_cam1 = cv.cvtColor(image_cam1, cv.COLOR_BGR2GRAY)
# find chessboard corners
ret_cam1 ,corners_cam1 = cv.findChessboardCorners(gray_image_cam1, chessboard_size, None)
if ret_cam1 == True:
print("Detecting chessboard in progress")
print(image_path_cam1)
# define criteria for subpixel accuracy
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# refine corner location (to subpixel accuracy) based on criteria.
corners2 = cv.cornerSubPix(gray_image_cam1, corners_cam1, (5 ,5), (-1 ,-1), criteria)
obj_points_cam1.append(objp_cam1)
img_points_cam1.append(corners_cam1)
# Draw and display the corners
cv.drawChessboardCorners(image_cam1, chessboard_size, corners2, ret_cam1)
cv.imshow('chessboard calibration', image_cam1)
cv.waitKey(1000)
# Calibrate camera
ret_cam1, K_cam1, dist_cam1, rvecs_cam1, tvecs_cam1 = cv.calibrateCamera(obj_points_cam1, img_points_cam1 ,gray_image_cam1.shape[::-1], None, None)
# Save parameters into numpy file
np.save("./camera_calib_params_cam1/ret", ret_cam1)
np.save("./camera_calib_params_cam1/K", K_cam1)
np.save("./camera_calib_params_cam1/dist", dist_cam1)
np.save("./camera_calib_params_cam1/rvecs", rvecs_cam1)
np.save("./camera_calib_params_cam1/tvecs", tvecs_cam1)
# Outputs Camera Matrix and Distortion Coefficients
print('=Camera Matrix (K)=\n', K_cam1, '\n')
print('=Distortion Coefficients=\n', dist_cam1, '\n')
print('=Rotational Vectors=\n', rvecs_cam1, '\n')
print('=Translational Vectors=\n', tvecs_cam1, '\n')
print('=Ret Value=\n', ret_cam1, '\n')
img_cam1 = cv.imread('/Users/yasmeen/Desktop/side_project_cabin/ContinuumRoboticsLab/calibimgs_cam1_NEW2/cam1_1.png')
cv.imshow('cam1_1.png', img_cam1)
h, w = img_cam1.shape[:2]
# Returns the new camera intrinsic matrix based on the free scaling parameter.
newCameraMatrix_cam1, roi_cam1 = cv.getOptimalNewCameraMatrix(K_cam1, dist_cam1, (w ,h), 1, (w ,h))
# UNDISTORTION
# undistort function and use ROI obtained to crop the result with OpenCV.
dst = cv.undistort(img_cam1, K_cam1, dist_cam1, None, newCameraMatrix_cam1)
# cropping the image with the ROI
x_cam1, y_cam1, w_cam1, h_cam1 = roi_cam1
dst = dst[y_cam1: y_cam1 +h_cam1, x_cam1: x_cam1 +w_cam1]
cv.imwrite('calibratedImg1.png', dst)
# Calculate projection error.
mean_error_cam1 = 0
for i in range(len(obj_points_cam1)):
img_points2, _ = cv.projectPoints(obj_points_cam1[i] ,rvecs_cam1[i] ,tvecs_cam1[i], K_cam1, dist_cam1)
error_cam1 = cv.norm(img_points_cam1[i], img_points2, cv.NORM_L2 ) /len(img_points2)
mean_error_cam1 += error_cam1
# output final re-projection error
print( "total error: {}".format(mean_error_cam1 /len(obj_points_cam1)))
# -------------------- CAMERA 3 CALIBRATION--------------------#
print("======== PHASE 1.3: CAMERA 3 CALIBRATION ========")
# Define arrays to save detected points
obj_points_cam3 = [] # 3D points in real world space
img_points_cam3 = [] # 3D points in image plane
# Prepare grid and points to display
objp_cam3 = np.zeros((np.prod(chessboard_size) ,3) ,dtype=np.float32)
objp_cam3[: ,:2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1 ,2)
# read images
calibration_paths_cam3 = glob.glob('./calibimgs_cam3_NEW2/*')
# Iterate over images to find intrinsic matrix
for image_path_cam3 in tqdm(calibration_paths_cam3):
# Load image
image_cam3 = cv.imread(image_path_cam3)
gray_image_cam3 = cv.cvtColor(image_cam3, cv.COLOR_BGR2GRAY)
# find chessboard corners
ret_cam3 ,corners_cam3 = cv.findChessboardCorners(gray_image_cam3, chessboard_size, None)
if ret_cam3 == True:
print("Detecting chessboard in progress")
print(image_path_cam3)
# define criteria for subpixel accuracy
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# refine corner location (to subpixel accuracy) based on criteria.
corners2_cam3 = cv.cornerSubPix(gray_image_cam3, corners_cam3, (5 ,5), (-1 ,-1), criteria)
obj_points_cam3.append(objp_cam3)
img_points_cam3.append(corners_cam3)
# Draw and display the corners
cv.drawChessboardCorners(image_cam3, chessboard_size, corners2_cam3, ret_cam3)
cv.imshow('chessboard calibration', image_cam3)
cv.waitKey(1000)
# Calibrate camera
ret_cam3, K_cam3, dist_cam3, rvecs_cam3, tvecs_cam3 = cv.calibrateCamera(obj_points_cam3, img_points_cam3 ,gray_image_cam3.shape[::-1], None, None)
# Save parameters into numpy file
np.save("./camera_calib_params_cam3/ret", ret_cam3)
np.save("./camera_calib_params_cam3/K", K_cam3)
np.save("./camera_calib_params_cam3/dist", dist_cam3)
np.save("./camera_calib_params_cam3/rvecs", rvecs_cam3)
np.save("./camera_calib_params_cam3/tvecs", tvecs_cam3)
# Outputs Camera Matrix and Distortion Coefficients
print('=Camera Matrix (K)=\n', K_cam3, '\n')
print('=Distortion Coefficients=\n', dist_cam3, '\n')
print('=Rotational Vectors=\n', rvecs_cam3, '\n')
print('=Translational Vectors=\n', tvecs_cam3, '\n')
print('=Ret Value=\n', ret_cam3, '\n')
img_cam3 = cv.imread('/Users/yasmeen/Desktop/side_project_cabin/ContinuumRoboticsLab/calibimgs_cam3_NEW2/cam3_1.png')
cv.imshow('cam3_1.png', img_cam3)
h_cam3, w_cam3 = img_cam3.shape[:2]
# Returns the new camera intrinsic matrix based on the free scaling parameter.
newCameraMatrix_cam3, roi_cam3 = cv.getOptimalNewCameraMatrix(K_cam3, dist_cam3, (w_cam3 ,h_cam3), 1, (w_cam3 ,h_cam3))
# UNDISTORTION
# undistort function and use ROI obtained to crop the result with OpenCV.
dst = cv.undistort(img_cam3, K_cam3, dist_cam3, None, newCameraMatrix_cam3)
# cropping the image with the ROI
x_cam3, y_cam3, w_cam3, h_cam3 = roi_cam3
dst_cam3 = dst[y_cam3: y_cam3 +h_cam3, x_cam3: x_cam3 +w_cam3]
cv.imwrite('calibratedImg1.png', dst_cam3)
# Calculate projection error.
mean_error_cam3 = 0
for i in range(len(obj_points_cam3)):
img_points2, _ = cv.projectPoints(obj_points_cam3[i] ,rvecs_cam3[i] ,tvecs_cam3[i], K_cam3, dist_cam3)
error_cam3 = cv.norm(img_points_cam3[i], img_points2, cv.NORM_L2 ) /len(img_points2)
mean_error_cam3 += error_cam3
# output final re-projection error
print( "total error: {}".format(mean_error_cam3 /len(obj_points_cam3)))
# ------------------------------------------------------------
# PREPROCESSING
print("======== PHASE 2: PREPROCESSING (FEATURE MATCHING & KEYPOINT DETECTION) ========")
img1 = cv.imread('aruco1_1_1.png', cv.IMREAD_GRAYSCALE)
img2 = cv.imread('aruco3_3_3.png', cv.IMREAD_GRAYSCALE)
# cv.waitKey(0) # waits until a key is pressed
# cv.destroyAllWindows() # destroys the window showing image
# Compare unprocessed images (a visual)
fig, axes = plt.subplots(1, 2, figsize=(15, 10))
axes[0].imshow(img1, cmap="gray")
axes[1].imshow(img2, cmap="gray")
# img 1 lines (top & bottom bound respectively)
axes[0].axhline(855)
axes[0].axhline(1770)
# img 2 lines (top & bottom bound respectively)
axes[1].axhline(700)
axes[1].axhline(1650)
plt.suptitle("Original Images Comparison")
plt.show()
# 1. Detect keypoints and their descriptors
# Based on: https://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html
# Initiate SIFT detector
sift = cv.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# Visualize keypoints
imgSift = cv.drawKeypoints(
img1, kp1, None, flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv.imshow("SIFT Keypoints", imgSift)
cv.imwrite("sift_keypoints.png", imgSift)
# Match keypoints in both images
# Based on: https://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50) # or pass empty dictionary
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# Keep good matches: calculate distinctive image features
# Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints.
# https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
matchesMask = [[0, 0] for i in range(len(matches))]
good = []
pts1 = []
pts2 = []
for i, (m, n) in enumerate(matches):
if m.distance < 0.7*n.distance:
# Keep this keypoint pair
matchesMask[i] = [1, 0]
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
# Draw the keypoint matches between both pictures
# Still based on: https://docs.opencv.org/master/dc/dc3/tutorial_py_matcher.html
draw_params = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask,
flags=cv.DrawMatchesFlags_DEFAULT)
keypoint_matches = cv.drawMatchesKnn(
img1, kp1, img2, kp2, matches, None, **draw_params)
cv.imshow("Keypoint matches", keypoint_matches)
cv.imwrite("keypoint_matches.png", keypoint_matches)
# ------------------------------------------------------------
print("======== PHASE 3: EPIPOLAR GEOMETRY ========")
# Calculate the fundamental matrix for the cameras
# https://docs.opencv.org/master/da/de9/tutorial_py_epipolar_geometry.html
pts1 = np.int32(pts1)
pts2 = np.int32(pts2)
fundamental_matrix, inliers = cv.findFundamentalMat(pts1, pts2, cv.FM_RANSAC)
# We select only inlier points
pts1 = pts1[inliers.ravel() == 1]
pts2 = pts2[inliers.ravel() == 1]
# Visualize epilines
# Adapted from: https://docs.opencv.org/master/da/de9/tutorial_py_epipolar_geometry.html
def drawlines(img1src, img2src, lines, pts1src, pts2src):
''' img1 - image on which we draw the epilines for the points in img2
lines - corresponding epilines '''
r, c = img1src.shape
img1color = cv.cvtColor(img1src, cv.COLOR_GRAY2BGR)
img2color = cv.cvtColor(img2src, cv.COLOR_GRAY2BGR)
# Edit: use the same random seed so that two images are comparable!
np.random.seed(0)
for r, pt1, pt2 in zip(lines, pts1src, pts2src):
color = tuple(np.random.randint(0, 255, 3).tolist())
x0, y0 = map(int, [0, -r[2]/r[1]])
x1, y1 = map(int, [c, -(r[2]+r[0]*c)/r[1]])
img1color = cv.line(img1color, (x0, y0), (x1, y1), color, 1)
img1color = cv.circle(img1color, tuple(pt1), 5, color, -1)
img2color = cv.circle(img2color, tuple(pt2), 5, color, -1)
return img1color, img2color
# Find epilines corresponding to points in right image (second image) and
# drawing its lines on left image
lines1 = cv.computeCorrespondEpilines(
pts2.reshape(-1, 1, 2), 2, fundamental_matrix)
lines1 = lines1.reshape(-1, 3)
img5, img6 = drawlines(img1, img2, lines1, pts1, pts2)
# Find epilines corresponding to points in left image (first image) and
# drawing its lines on right image
lines2 = cv.computeCorrespondEpilines(
pts1.reshape(-1, 1, 2), 1, fundamental_matrix)
lines2 = lines2.reshape(-1, 3)
img3, img4 = drawlines(img2, img1, lines2, pts2, pts1)
plt.subplot(121), plt.imshow(img5)
plt.subplot(122), plt.imshow(img3)
plt.suptitle("Epilines in both images")
plt.savefig("epilines.png")
plt.show()
#---------------------------------------------------------- Stereo Rectification ----------------------------------------------------------#
print("======== PHASE 4: STEREO RECTIFICATION ========")
# Stereo rectification (uncalibrated variant)
# Adapted from: https://stackoverflow.com/a/62607343
# NOTE: using the uncalibrated method to get the H1, H2 parameters has no influence on the overall calibration status, just used to get those parameters
h1, w1 = img1.shape
h2, w2 = img2.shape
_, H1, H2 = cv.stereoRectifyUncalibrated(
np.float32(pts1), np.float32(pts2), fundamental_matrix, imgSize=(w1, h1)
)
# Rectify (undistort) the images and save them
# Adapted from: https://stackoverflow.com/a/62607343
img1_rectified = cv.warpPerspective(img1, H1, (w1, h1))
img2_rectified = cv.warpPerspective(img2, H2, (w2, h2))
cv.imwrite("rectified_1.png", img1_rectified)
cv.imwrite("rectified_2.png", img2_rectified)
# Draw the rectified images
fig, axes = plt.subplots(1, 2, figsize=(15, 10))
axes[0].imshow(img1_rectified, cmap="gray")
axes[1].imshow(img2_rectified, cmap="gray")
axes[0].axhline(670)
axes[1].axhline(670)
axes[0].axhline(1650)
axes[1].axhline(1650)
plt.suptitle("Rectified images")
plt.savefig("rectified_images.png")
plt.show()
# ---------------------------------------------------------- Detect ArUco (detected array of Aruco marker corners in each image) ----------------------------------------------------------#
print("======== PHASE 5: ARUCO MARKER DETECTION ========")
path_1 = r'/Users/yasmeen/Desktop/side_project_cabin/ContinuumRoboticsLab/rectified_1.png'
path_3 = r'/Users/yasmeen/Desktop/side_project_cabin/ContinuumRoboticsLab/rectified_2.png'
img_test_1 = cv.imread(path_1)
img_test_3 = cv.imread(path_3)
projPoints1 = np.array(detectAruco(img_test_1, markerSize=6, totalMarkers=250, draw=True))
projPoints3 = np.array(detectAruco(img_test_3, markerSize=6, totalMarkers=250, draw=True))
# transposing to get the desired 2xN projection matrix size (for the triangulatePoints method)
projPoints1 = np.transpose(projPoints1)
projPoints3 = np.transpose(projPoints3)
print(projPoints1)
print(projPoints1.shape)
print(projPoints3)
print(projPoints3.shape)
#---------------------------------------------------------- Projection Matrices ----------------------------------------------------------#
print("======== PHASE 6: PROJECTION MATRICES ========")
# projMatr1 & 2 are the calculated matrices separately for cams 1 & 3
# PROJECTION MATRICES (CAMERA 1)
rotation_mat_cam1 = np.zeros(shape=(3, 3))
R_cam1 = cv.Rodrigues(rvecs_cam1[0], rotation_mat_cam1)[0]
projMatr1 = np.column_stack((np.matmul(K_cam1,R_cam1), tvecs_cam1[0]))
# PROJECTION MATRICES (CAMERA 3)
rotation_mat_cam3 = np.zeros(shape=(3, 3))
R_cam3 = cv.Rodrigues(rvecs_cam3[0], rotation_mat_cam3)[0]
projMatr3 = np.column_stack((np.matmul(K_cam3,R_cam3), tvecs_cam3[0]))
print("Project Matrix 1")
print (projMatr1)
print("Project Matrix 3")
print (projMatr3)
# #---------------------------------------------------------- Triangulation ----------------------------------------------------------#
#
print("======== PHASE 7: TRIANGULATION & 3D COORDINATES ========")
# The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their observations with a stereo camera.
final_coordinates = cv.triangulatePoints(projMatr1, projMatr3, projPoints1, projPoints3)
# 'points' is converted to un-homogeneous ( local ) coordinates by dividing 'x, y, z' with 'w', the 4th row
one_aruco_marker_corner_coordinate = final_coordinates/final_coordinates[3]
print("Final Triangulated Points Matrix")
print(final_coordinates)
print("One AruUco Marker Coordinate")
print(one_aruco_marker_corner_coordinate)
cv.waitKey()
cv.destroyAllWindows()
# ---------------------------------------------------------------