Skip to content

Latest commit

 

History

History
81 lines (51 loc) · 2.34 KB

README.md

File metadata and controls

81 lines (51 loc) · 2.34 KB

Figure

Results of Transformer

Figures of NASA

Figures of CALCE

Supplement

Due to the length of the paper, the two parameters of dropout and noise_level are not discussed. By setting these two parameters, better results can be obtained than in the paper.

  • noise level = 0.01: Setting the value of 1% disturbance is best: too large will degrade performance, too small will have little effect.

  • dropout = 1e-4~1e-3: Set a small value for the network dropout to ensure the robustness of the model.

Packages

Update

  • 6/5/2024, add figures of model and prediction
  • 1/3/2024, upload the open sorce of AttMoE
  • 24/2/2022,Change some variable names

Dataset CALCE processing reference

https://github.com/konkon3249/BatteryLifePrediction

E-mail

Please feel free to contact me: [email protected]

More (更多内容)

  1. 马里兰大学锂电池数据集 CALCE,基于 Python 的锂电池寿命预测: https://snailwish.com/437/

  2. NASA 锂电池数据集,基于 Python 的锂电池寿命预测: https://snailwish.com/395/

  3. NASA 锂电池数据集,基于 python 的 MLP 锂电池寿命预测: https://snailwish.com/427/

  4. NASA 和 CALCE 锂电池数据集,基于 Pytorch 的 RNN、LSTM、GRU 寿命预测: https://snailwish.com/497/

  5. 基于 Pytorch 的 Transformer 锂电池寿命预测: https://snailwish.com/555/

  6. 锂电池研究之七——基于 Pytorch 的高斯函数拟合时间序列数据: https://snailwish.com/576/

Citation

@article{chen2022transformer,
  title={Transformer network for remaining useful life prediction of lithium-ion batteries},
  author={Chen, Daoquan and Hong, Weicong and Zhou, Xiuze},
  journal={Ieee Access},
  volume={10},
  pages={19621--19628},
  year={2022},
  publisher={IEEE}
}

@article{chen2024attmoe,
  title={AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries},
  author={Chen, Daoquan and Zhou, Xiuze},
  journal={Journal of Energy Storage},
  volume={84},
  pages={110780},
  year={2024},
  publisher={Elsevier}
}