-
Notifications
You must be signed in to change notification settings - Fork 159
/
Copy pathrun_exp.py
executable file
·90 lines (78 loc) · 3.24 KB
/
run_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from DEC import DEC
import os, csv
import datasets
from keras.optimizers import SGD
from keras.initializers import VarianceScaling
import numpy as np
expdir='./results/exp1'
if not os.path.exists(expdir):
os.mkdir(expdir)
logfile = open(expdir + '/results.csv', 'a')
logwriter = csv.DictWriter(logfile, fieldnames=['trials', 'acc', 'nmi', 'ari'])
logwriter.writeheader()
trials=10
for db in ['usps', 'reuters10k', 'stl', 'mnist', 'fmnist']:
logwriter.writerow(dict(trials=db, acc='', nmi='', ari=''))
save_db_dir = os.path.join(expdir, db)
if not os.path.exists(save_db_dir):
os.mkdir(save_db_dir)
# load dataset
from datasets import load_data
x, y = load_data(db)
n_clusters = len(np.unique(y))
init = 'glorot_uniform'
pretrain_optimizer = 'adam'
# setting parameters
if db == 'mnist' or db == 'fmnist':
update_interval = 140
pretrain_epochs = 300
init = VarianceScaling(scale=1. / 3., mode='fan_in',
distribution='uniform') # [-limit, limit], limit=sqrt(1./fan_in)
pretrain_optimizer = SGD(lr=1, momentum=0.9)
elif db == 'reuters10k':
update_interval = 30
pretrain_epochs = 50
init = VarianceScaling(scale=1. / 3., mode='fan_in',
distribution='uniform') # [-limit, limit], limit=sqrt(1./fan_in)
pretrain_optimizer = SGD(lr=1, momentum=0.9)
elif db == 'usps':
update_interval = 30
pretrain_epochs = 50
elif db == 'stl':
update_interval = 30
pretrain_epochs = 10
# prepare model
dims = [x.shape[-1], 500, 500, 2000, 10]
'''Training for base and nosp'''
results = np.zeros(shape=(trials, 3))
baseline = np.zeros(shape=(trials, 3))
metrics0=[]
metrics1=[]
for i in range(trials): # base
save_dir = os.path.join(save_db_dir, 'trial%d' % i)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
dec = DEC(dims=[x.shape[-1], 500, 500, 2000, 10], n_clusters=n_clusters, init=init)
dec.pretrain(x=x, y=y, optimizer=pretrain_optimizer,
epochs=pretrain_epochs,
save_dir=save_dir)
dec.compile(optimizer=SGD(0.01, 0.9), loss='kld')
dec.fit(x, y=y,
update_interval=update_interval,
save_dir=save_dir)
log = open(os.path.join(save_dir, 'dec_log.csv'), 'r')
reader = csv.DictReader(log)
metrics = []
for row in reader:
metrics.append([row['acc'], row['nmi'], row['ari']])
metrics0.append(metrics[0])
metrics1.append(metrics[-1])
log.close()
metrics0, metrics1 = np.asarray(metrics0, dtype=float), np.asarray(metrics1, dtype=float)
for t, line in enumerate(metrics0):
logwriter.writerow(dict(trials=t, acc=line[0], nmi=line[1], ari=line[2]))
logwriter.writerow(dict(trials=' ', acc=np.mean(metrics0, 0)[0], nmi=np.mean(metrics0, 0)[1], ari=np.mean(metrics0, 0)[2]))
for t, line in enumerate(metrics1):
logwriter.writerow(dict(trials=t, acc=line[0], nmi=line[1], ari=line[2]))
logwriter.writerow(dict(trials=' ', acc=np.mean(metrics1, 0)[0], nmi=np.mean(metrics1, 0)[1], ari=np.mean(metrics1, 0)[2]))
logfile.close()