-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathGaussianMLClassifier2.m
79 lines (66 loc) · 3.54 KB
/
GaussianMLClassifier2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
%write code for GaussianMLClassifier1.m which corresponds to “case 2” discussed in class
% (covariance of all classes is identical but arbitrary)
function [Y_Test] = GaussianMLClassifier2(X_Train, Y_Train, X_Test)
%Training procedure: using the training data to determine the parameters
%using the ML estimator for the Gaussian case.
[~ ,NoTrS] = size(X_Train);
[NoF,NoTeS] = size(X_Test);
Y_Test=zeros(NoTeS,1);
%Assume that the data is labelled in continuous integer: 1,2,3...,Noc
%NoC = max(Y_Train); %Number of class(label)
%%If the data is not labelled in continuous integer,but 0,2,5,7,8...
% we use class()
class_label = min(Y_Train);
i = 0;
class = zeros(max(Y_Train),2);
for j= 1: max(Y_Train)
class_temp = find( Y_Train == class_label); % account the number
i = i+1; % i to account the number of class
class(i,1)= class_label ; % the true lable of class i
class(i,2)= length(class_temp ); %the No.of elements in class i(labeled as class(i,1))
class_label = class_label+1;
end
class(class(:,2)==0,:)=[]; % delete the extra row if the number of this class is zero.
NoC = length(class);
%%
%------------------Get the estimation value of training data--------------
Mu = zeros(NoF,NoC); %Number of Feature * Number of class
%Sigma = zeros(NoF,NoF,NoC); %covariance matrix for NoC pages
P_w = zeros(NoC,1); %Number of class * 1, storage the prior posibility of class i
for i = class(:,1)' %for class(1)
Index_class = (Y_Train == i); % all the index of ith class
X_Train_classi = (X_Train(:,Index_class))'; %all the data of ith class
% the output Mu(:,i), Sigma(:,:,i) are estimation value of training data of class i
[Mu_temp, ~] = GaussianMLEstimator(X_Train_classi);
Mu(:,i)= Mu_temp';
P_w(i)= class(i,2)/ NoTrS; %the number of data of class i in trainng data
end
%[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[Differenc to GaussianMLClassifier3]]]]]]]]]]]]]]]]]]]
%by lumping all the classes together,we can use the covariance from the global dataset (without class labels)
[~, cov_mat] = GaussianMLEstimator(X_Train');
%[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[Differenc to GaussianMLClassifier3]]]]]]]]]]]]]]]]]]]
%%
%----------------------- Put testing data into classifier------
% decide wi(class i)
%if P(wi|x)>P(wj|x) (for all j ~=i)
%=> P(x|wi)*P(wi)>P(x|wj)*P(wj) (for all j ~=i)
%introduce: gi(x)= ln(P(x|wi))+ln(P(wi))
%The final classifier is :
% decide wi(class i) if gi(x)>gj(x) (for all j ~=i)
%for Gaussian case, we use log likelihood discriminant functions g(i)
g_C2 = zeros(NoC,1) ;
for Idx_test = 1:(NoTeS) %for each data point in training sample
%----------------------------------------------------------------------
%-----Generate the classifier for class i ,g(i) is the distriminate----
%funciton
x = X_Test(:,Idx_test); % NoF*1
for i = class(:,1)' %Put in to the classifier of each class
%[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[Differenc to GaussianMLClassifier3]]]]]]]]]]]]]]]]]]]
w= (cov_mat ^(-1))* Mu(:,i);
w_0 = -1/2* Mu(:,i)'*(cov_mat ^(-1))* Mu(:,i) + log(P_w(i));
g_C2(i)= w'* x + w_0;
%[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[Differenc to GaussianMLClassifier3]]]]]]]]]]]]]]]]]]]
end
%-----------------------------------------------------------------------
Y_Test(Idx_test) = find(g_C2 == max(g_C2)); % if gi(x)>gj(x) (for all j ~=i) classify this data as class i
end