forked from Ien001/AG-CNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
244 lines (193 loc) · 8.28 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# encoding: utf-8
"""
The main CheXNet model implementation.
"""
import re
import sys
import os
import cv2
import time
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import lr_scheduler
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from read_data import ChestXrayDataSet
from sklearn.metrics import roc_auc_score
from skimage.measure import label
from model import Densenet121_AG, Fusion_Branch
from PIL import Image
#np.set_printoptions(threshold = np.nan)
CKPT_PATH = ''
CKPT_PATH_G = '/best_model/AG_CNN_Global_epoch_1.pkl'
CKPT_PATH_L = '/best_model/AG_CNN_Local_epoch_2.pkl'
CKPT_PATH_F = '/best_model/AG_CNN_Fusion_epoch_23.pkl'
N_CLASSES = 14
CLASS_NAMES = [ 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass', 'Nodule', 'Pneumonia',
'Pneumothorax', 'Consolidation', 'Edema', 'Emphysema', 'Fibrosis', 'Pleural_Thickening', 'Hernia']
DATA_DIR = '/path/to/ur/data'
TRAIN_IMAGE_LIST = '/labels/train_list.txt'
TEST_IMAGE_LIST = '/labels/test_list.txt'
num_epochs = 50
BATCH_SIZE = 32
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
preprocess = transforms.Compose([
transforms.Resize((256,256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
def Attention_gen_patchs(ori_image, fm_cuda):
# fm => mask =>(+ ori-img) => crop = patchs
feature_conv = fm_cuda.data.cpu().numpy()
size_upsample = (224, 224)
bz, nc, h, w = feature_conv.shape
patchs_cuda = torch.FloatTensor().cuda()
for i in range(0, bz):
feature = feature_conv[i]
cam = feature.reshape((nc, h*w))
cam = cam.sum(axis=0)
cam = cam.reshape(h,w)
cam = cam - np.min(cam)
cam_img = cam / np.max(cam)
cam_img = np.uint8(255 * cam_img)
heatmap_bin = binImage(cv2.resize(cam_img, size_upsample))
heatmap_maxconn = selectMaxConnect(heatmap_bin)
heatmap_mask = heatmap_bin * heatmap_maxconn
ind = np.argwhere(heatmap_mask != 0)
minh = min(ind[:,0])
minw = min(ind[:,1])
maxh = max(ind[:,0])
maxw = max(ind[:,1])
# to ori image
image = ori_image[i].numpy().reshape(224,224,3)
image = image[int(224*0.334):int(224*0.667),int(224*0.334):int(224*0.667),:]
image = cv2.resize(image, size_upsample)
image_crop = image[minh:maxh,minw:maxw,:] * 256 # because image was normalized before
image_crop = preprocess(Image.fromarray(image_crop.astype('uint8')).convert('RGB'))
img_variable = torch.autograd.Variable(image_crop.reshape(3,224,224).unsqueeze(0).cuda())
patchs_cuda = torch.cat((patchs_cuda,img_variable),0)
return patchs_cuda
def binImage(heatmap):
_, heatmap_bin = cv2.threshold(heatmap , 0 , 255 , cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# t in the paper
#_, heatmap_bin = cv2.threshold(heatmap , 178 , 255 , cv2.THRESH_BINARY)
return heatmap_bin
def selectMaxConnect(heatmap):
labeled_img, num = label(heatmap, connectivity=2, background=0, return_num=True)
max_label = 0
max_num = 0
for i in range(1, num+1):
if np.sum(labeled_img == i) > max_num:
max_num = np.sum(labeled_img == i)
max_label = i
lcc = (labeled_img == max_label)
if max_num == 0:
lcc = (labeled_img == -1)
lcc = lcc + 0
return lcc
def main():
print('********************load data********************')
normalize = transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
test_dataset = ChestXrayDataSet(data_dir=DATA_DIR,
image_list_file=TEST_IMAGE_LIST,
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
test_loader = DataLoader(dataset=test_dataset, batch_size=128,
shuffle=False, num_workers=4, pin_memory=True)
print('********************load data succeed!********************')
print('********************load model********************')
# initialize and load the model
Global_Branch_model = Densenet121_AG(pretrained = False, num_classes = N_CLASSES).cuda()
Local_Branch_model = Densenet121_AG(pretrained = False, num_classes = N_CLASSES).cuda()
Fusion_Branch_model = Fusion_Branch(input_size = 2048, output_size = N_CLASSES).cuda()
if os.path.isfile(CKPT_PATH_G):
checkpoint = torch.load(CKPT_PATH_G)
Global_Branch_model.load_state_dict(checkpoint)
print("=> loaded Global_Branch_model checkpoint")
if os.path.isfile(CKPT_PATH_L):
checkpoint = torch.load(CKPT_PATH_L)
Local_Branch_model.load_state_dict(checkpoint)
print("=> loaded Local_Branch_model checkpoint")
if os.path.isfile(CKPT_PATH_F):
checkpoint = torch.load(CKPT_PATH_F)
Fusion_Branch_model.load_state_dict(checkpoint)
print("=> loaded Fusion_Branch_model checkpoint")
cudnn.benchmark = True
print('******************** load model succeed!********************')
print('******* begin testing!*********')
test(Global_Branch_model, Local_Branch_model, Fusion_Branch_model,test_loader)
def test(model_global, model_local, model_fusion, test_loader):
# initialize the ground truth and output tensor
gt = torch.FloatTensor().cuda()
pred_global = torch.FloatTensor().cuda()
pred_local = torch.FloatTensor().cuda()
pred_fusion = torch.FloatTensor().cuda()
# switch to evaluate mode
model_global.eval()
model_local.eval()
model_fusion.eval()
cudnn.benchmark = True
for i, (inp, target) in enumerate(test_loader):
with torch.no_grad():
if i % 2000 == 0:
print('testing process:',i)
target = target.cuda()
gt = torch.cat((gt, target), 0)
input_var = torch.autograd.Variable(inp.cuda())
#output = model_global(input_var)
output_global, fm_global, pool_global = model_global(input_var)
patchs_var = Attention_gen_patchs(inp,fm_global)
output_local, _, pool_local = model_local(patchs_var)
output_fusion = model_fusion(pool_global,pool_local)
pred_global = torch.cat((pred_global, output_global.data), 0)
pred_local = torch.cat((pred_local, output_local.data), 0)
pred_fusion = torch.cat((pred_fusion, output_fusion.data), 0)
AUROCs_g = compute_AUCs(gt, pred_global)
AUROC_avg = np.array(AUROCs_g).mean()
print('Global branch: The average AUROC is {AUROC_avg:.3f}'.format(AUROC_avg=AUROC_avg))
for i in range(N_CLASSES):
print('The AUROC of {} is {}'.format(CLASS_NAMES[i], AUROCs_g[i]))
AUROCs_l = compute_AUCs(gt, pred_local)
AUROC_avg = np.array(AUROCs_l).mean()
print('\n')
print('Local branch: The average AUROC is {AUROC_avg:.3f}'.format(AUROC_avg=AUROC_avg))
for i in range(N_CLASSES):
print('The AUROC of {} is {}'.format(CLASS_NAMES[i], AUROCs_l[i]))
AUROCs_f = compute_AUCs(gt, pred_fusion)
AUROC_avg = np.array(AUROCs_f).mean()
print('\n')
print('Fusion branch: The average AUROC is {AUROC_avg:.3f}'.format(AUROC_avg=AUROC_avg))
for i in range(N_CLASSES):
print('The AUROC of {} is {}'.format(CLASS_NAMES[i], AUROCs_f[i]))
def compute_AUCs(gt, pred):
"""Computes Area Under the Curve (AUC) from prediction scores.
Args:
gt: Pytorch tensor on GPU, shape = [n_samples, n_classes]
true binary labels.
pred: Pytorch tensor on GPU, shape = [n_samples, n_classes]
can either be probability estimates of the positive class,
confidence values, or binary decisions.
Returns:
List of AUROCs of all classes.
"""
AUROCs = []
gt_np = gt.cpu().numpy()
pred_np = pred.cpu().numpy()
for i in range(N_CLASSES):
AUROCs.append(roc_auc_score(gt_np[:, i], pred_np[:, i]))
return AUROCs
if __name__ == '__main__':
main()