-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUD889_prv_Ls3_SudokuAI_10_DFS_Solution.py
190 lines (170 loc) · 6.63 KB
/
UD889_prv_Ls3_SudokuAI_10_DFS_Solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
################################################################################
# Wayne H Nixalo - 2017-Jun-16 02:37 | 2017-Jun-17 17:39
# UD889 - Udacity AIND prv
# Lesson 3: Solving a Sudoku with AI
# 10: Coding the Solution - DFS
################################################################################
# Time to code the final solution!
# Finish the code in the function search, which will create a tree of
# possibilities and traverse it using DFS until it finds a solution for
# the sudoku puzzle
from utils import *
# 2nd attempt -- trying to do the staff solution w/o looking:
def search(values):
"Using depth-first search and propagation, create a search tree and solve the sudoku."
# First, reduce the puzzle using the previous function
values = reduce_puzzle(values)
if values == False:
return False
if all(len(values[box]) == 1 for box in boxes):
return values
# Choose one of the unfilled squares with the fewest possibilities
n, s = min((len(values[s]), s) for s in boxes if len(values[s]) > 1)
# Now use recursion to solve each one of the resulting sudokus, and if one returns a value (not False), return that answer!
# try each potential value in that (min)box
for value in values[s]:
# createa a copy to send off
new_sudoku = values.copy()
# assign that min value
new_sudoku[s] = value
attempt = search(new_sudoku)
if attempt:
return attempt
# If you're stuck, see the solution.py tab!
########################################
# STAFF SOLN:
def search(values):
"Using depth-first search and propagation, create a search tree and solve the sudoku."
# First, reduce the puzzle using the previous function
values = reduce_puzzle(values)
if values is False:
return False ## Failed earlier
if all(len(values[s]) == 1 for s in boxes):
return values ## Solved!
# Choose one of the unfilled squares with the fewest possibilities
n,s = min((len(values[s]), s) for s in boxes if len(values[s]) > 1)
# Now use recursion to solve each one of the resulting sudokus, and if one returns a value (not False), return that answer!
for value in values[s]:
new_sudoku = values.copy()
new_sudoku[s] = value
attempt = search(new_sudoku)
if attempt:
return attempt
# If you're stuck, see the solution.py tab!
########################################
# NOTE: https://stackoverflow.com/questions/3282823/get-the-key-corresponding-to-the-minimum-value-within-a-dictionary
# minbox = min(values, key=values.get())
# OUTPUT:
# Looks good!
# 4 1 7 |3 6 9 |8 2 5
# 6 3 2 |1 5 8 |9 4 7
# 9 5 8 |7 2 4 |3 1 6
# ------+------+------
# 8 2 5 |4 3 7 |1 6 9
# 7 9 1 |5 8 6 |4 3 2
# 3 4 6 |9 1 2 |7 5 8
# ------+------+------
# 2 8 9 |6 4 3 |5 7 1
# 5 7 3 |2 9 1 |6 8 4
# 1 6 4 |8 7 5 |2 9 3
################################################################################
# utils.py
################################################################################
rows = 'ABCDEFGHI'
cols = '123456789'
def cross(a, b):
return [s+t for s in a for t in b]
boxes = cross(rows, cols)
row_units = [cross(r, cols) for r in rows]
column_units = [cross(rows, c) for c in cols]
square_units = [cross(rs, cs) for rs in ('ABC','DEF','GHI') for cs in ('123','456','789')]
unitlist = row_units + column_units + square_units
units = dict((s, [u for u in unitlist if s in u]) for s in boxes)
peers = dict((s, set(sum(units[s],[]))-set([s])) for s in boxes)
def display(values):
"""
Display the values as a 2-D grid.
Input: The sudoku in dictionary form
Output: None
"""
width = 1+max(len(values[s]) for s in boxes)
line = '+'.join(['-'*(width*3)]*3)
for r in rows:
print(''.join(values[r+c].center(width)+('|' if c in '36' else '')
for c in cols))
if r in 'CF': print(line)
return
def grid_values(grid):
"""
Convert grid into a dict of {square: char} with '123456789' for empties.
Input: A grid in string form.
Output: A grid in dictionary form
Keys: The boxes, e.g., 'A1'
Values: The value in each box, e.g., '8'. If the box has no value, then the value will be '123456789'.
"""
chars = []
digits = '123456789'
for c in grid:
if c in digits:
chars.append(c)
if c == '.':
chars.append(digits)
assert len(chars) == 81
return dict(zip(boxes, chars))
def eliminate(values):
"""
Go through all the boxes, and whenever there is a box with a value, eliminate this value from the values of all its peers.
Input: A sudoku in dictionary form.
Output: The resulting sudoku in dictionary form.
"""
solved_values = [box for box in values.keys() if len(values[box]) == 1]
for box in solved_values:
digit = values[box]
for peer in peers[box]:
values[peer] = values[peer].replace(digit,'')
return values
def only_choice(values):
"""
Go through all the units, and whenever there is a unit with a value that only fits in one box, assign the value to this box.
Input: A sudoku in dictionary form.
Output: The resulting sudoku in dictionary form.
"""
for unit in unitlist:
for digit in '123456789':
dplaces = [box for box in unit if digit in values[box]]
if len(dplaces) == 1:
values[dplaces[0]] = digit
return values
def reduce_puzzle(values):
"""
Iterate eliminate() and only_choice(). If at some point, there is a box with no available values, return False.
If the sudoku is solved, return the sudoku.
If after an iteration of both functions, the sudoku remains the same, return the sudoku.
Input: A sudoku in dictionary form.
Output: The resulting sudoku in dictionary form.
"""
solved_values = [box for box in values.keys() if len(values[box]) == 1]
stalled = False
while not stalled:
solved_values_before = len([box for box in values.keys() if len(values[box]) == 1])
values = eliminate(values)
values = only_choice(values)
solved_values_after = len([box for box in values.keys() if len(values[box]) == 1])
stalled = solved_values_before == solved_values_after
if len([box for box in values.keys() if len(values[box]) == 0]):
return False
return values
################################################################################
# note on usage of python all():
# false
thing = [[1],[1],[],[0]]
print(all(thing))
# true
thing = [[1],[1],[0],[0]]
print(all(thing))
# false
thing = [[],[],[],[]]
print(all(thing))
# true
thing = []
print(all(thing))