forked from beckysag/traveling-salesman
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tsp_report.tex
238 lines (204 loc) · 9.03 KB
/
tsp_report.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
\documentclass[11pt,twocolumn]{article}
\usepackage{graphicx}
\usepackage{caption}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[left=1in, top=.75in, bottom=.75in, right=1in]{geometry}
\usepackage{tikz}
\usepackage{algpseudocode}
\usepackage{algorithm}
\usepackage{algorithmicx}
% Body: Main Document
\begin{document}
\title{The Traveling Salesman Problem}
\author{Rebecca Sagalyn}
\maketitle
\clearpage
% Intro
\section{Introduction}
Given a set of cities and known distances between each pair of cities, the TSP aims to find a tour in which each city is visited exactly once and the distance travelled is minimized. I chose to use the Christofides' algorithm to construct a tour and the 2-opt algorithm to improve it.
% Christofides
\section{Christofides' Approximation Algorithm}
Christofides' is a tour construction heuristic that can be applied to graphs with the following property:
A complete graph $G = (V,E,w)$ with edge weights that satisfy the triangle inequality
$w(x,y) + w(y,z) \leq w(x,z)$ \hspace*{20 pt} $\forall x,y,z \in \mathcal{V}$
\begin{enumerate}
\item Find a minimum spanning tree T of G
\item Let O be the set of vertices with an {\em odd} degree in T
\item Find a minimum cost perfect matching M for these vertices
\item Add M to T to obtain multigraph H
\item Find a Eulerian tour of H
\item Convert the Eulerian tour into Hamiltonian path by skipping visited nodes (using shortcuts)
\end{enumerate}
\usetikzlibrary{arrows,positioning,automata,shadows,fit,shapes,calc}
\begin{center}
{\small
\begin{tikzpicture}[-,>=latex,shorten >=1pt,auto,node distance=2cm, main node/.style={circle,draw},scale=0.4]
\tikzstyle{every node}=[font=\tiny]
\draw (8,8) node(a) [circle, draw] {0}
(4,2) node(b) [circle, draw] {1}
(1,1) node(c) [circle, draw] {2}
(11,6) node(d) [circle, draw] {3}
(3,10) node(e) [circle, draw] {4};
\end{tikzpicture}
\captionof{figure}{\small Nodes}
\label{tikz}
}
\end{center}
% MST
\subsection{Minimum Spanning Tree}
I used Prim's Algorithm to find the minimum spanning tree in G:
\begin{algorithmic}
\Statex
\Function{MST}{$G=(V,E)$}
\For{$v$ in $V$}
\State $key[v]\gets \infty$
\State $parent[v]\gets NULL$
\State insert $v$ into $Q$
\EndFor
\State $key[0]\gets 0$
\While{$! Q.empty()$}
\State $v\gets Q.removeMin()$
\For{$u$ adjacent to $v$}
\If{$u \in \mathcal Q$ and $weight(u,v) < key[u]$}
\State $parent[u]\gets v$
\EndIf
\State $key[v]\gets weight(u,v)$
\EndFor
\EndWhile
\EndFunction
\end{algorithmic}
\bigskip The algorithm maintains an array $Q$ with the vertices that are not yet in the tree (initially, $Q$ is empty). It iterates through each vertex $v$ not yet in the tree (using vertex 0 as the intial vertex) and chooses the minimum weight edge $(u,v)$ where $u$ is already in the tree. Thus, this is the lightest edge crossing the cut (since it connects an edge in the MST with an edge not yet in the MST). Then vertex $v$ is added to the tree. The algorithm continues until $Q$ is empty and thus all vertices have been added to the MST.
\usetikzlibrary{arrows,positioning,automata,shadows,fit,shapes,calc}
\begin{center}
{\small
\begin{tikzpicture}[-,>=latex,shorten >=1pt,auto,node distance=6cm, main node/.style={circle,draw},scale=0.4]
\tikzstyle{every node}=[font=\tiny]
\draw (8,8) node(a) [circle, draw] {0}
(4,2) node(b) [circle, draw] {1}
(1,1) node(c) [circle, draw] {2}
(11,6) node(d) [circle, draw] {3}
(3,10) node(e) [circle, draw] {4};
\draw (a) to (b);
\draw (a) to (d);
\draw (a) to (e);
\draw (b) to (c);
\end{tikzpicture}
\captionof{figure}{\small Find the MST}
\label{tikz}
}
\end{center}
% Odd degree nodes
\subsection{Vertices With An Odd Degree in MST}
The next step is to find vertices with an odd degree in the MST. Since I store the MST in an adjacency list using C++ vectors, this procedure only involves checking the vector size at each index (node) of the list and is $O(n)$.
% Matching
\subsection{Weighted Perfect Matching for Odd Vertices}
A connected graph has an even number of vertices of an odd degree. We now find a perfect matching among these vertices so that all vertices have an even degree. Ideally, we would find a minimum matching, but instead I used a greedy algorithm to find an approximate minimal matching.
\begin{algorithmic}
\Statex
\Function{PerfectMatching}{}
\State \textbf{Input}: $odds$ (list of odd vertices), $G$ (adjacency list)
\While{$(!odds.empty)$}
\State $v\gets odds.popFront()$
\State $length\gets \infty$
\For{$u \in \mathcal odds$}
\If{$weight(u,v) < length$}
\State $length\gets weight(u,v)$
\State $closest\gets u$
\EndIf
\EndFor
\State $G.addEdge(closest,v)$
\State $odds.remove(closest)$
\EndWhile
\EndFunction
\end{algorithmic}
\usetikzlibrary{arrows,positioning,automata,shadows,fit,shapes,calc}
\begin{center}
{\small
\begin{tikzpicture}[-,>=latex,shorten >=1pt,auto,node distance=6cm, main node/.style={circle,draw},scale=0.4]
\tikzstyle{every node}=[font=\tiny]
\draw
(8,8) node[fill=blue!30](a) [circle, draw=blue!40] {0}
(4,2) node(b) [circle, draw] {1}
(1,1) node[fill=blue!30](c) [circle, draw=blue!40] {2}
(11,6) node[fill=blue!30](d) [circle, draw=blue!40] {3}
(3,10) node[fill=blue!30](e) [circle, draw=blue!40] {4};
\draw (a) to (b);
\draw (a) to (d);
\draw [blue!40,thick] (c) to (e);
\draw (a) to (e);
\draw (b) to (c);
\draw [blue!40](11.3,6.5) arc (-5:120:2cm);
\end{tikzpicture}
\captionof{figure}{\small Find a perfect minimal-{\em ish} matching on odd vertices}
\label{tikz}
}
\end{center}
The set of matched vertices is now added to the MST, forming a new multigraph.
% Euler
\subsection{Eulerian Tour}
Next we find a euler circuit starting at any arbitrary node in our multigraph. If our node has neighbors, we push our node on a stack, choose a neighbor, remove the edge between them from the graph, and make that neighbor the current vertex. If our vertex has no neighbors left, we add it to our circuit and pop the top vertex from the stack to use as our current vertex. We continue tracing a tour in this manner until the stack is empty and the last vertex has no more neighbors left.
\usetikzlibrary{arrows,positioning,automata,shadows,fit,shapes,calc}
\begin{center}
{\small
\begin{tikzpicture}[-,>=latex,shorten >=1pt,auto,node distance=6cm, main node/.style={circle,draw},scale=0.4]
\tikzstyle{every node}=[font=\tiny]
\draw
(8,8) node(a) [circle, draw] {0}
(4,2) node(b) [circle, draw] {1}
(1,1) node(c) [circle, draw] {2}
(11,6) node(d) [circle, draw] {3}
(3,10) node(e) [circle, draw] {4};
\draw [->] (a) -- (d);
\draw [->](11.3,6.5) arc (-5:120:2cm);
\draw [->](a) to (e);
\draw [->](e) to (c);
\draw [->](c) to (b);
\draw [->](b) to (a);
\end{tikzpicture}
\captionof{figure}{\small Find a Euler circuit}
\label{tikz}
}
\end{center}
% Hamilton
\subsection{Hamiltonian Path}
Finally, we turn our Euler circuit into a Hamiltonian path by walking along the Euler tour, checking at every stop whether that node has already been visited. If it has, we skip that node and move on to the next one. Since our graph satisfies the triangle inequality, shortcutting vertices in this manner will not increase the length of our path.
\usetikzlibrary{arrows,positioning,automata,shadows,fit,shapes,calc}
\begin{center}
{\small
\begin{tikzpicture}[-,>=latex,shorten >=1pt,auto,node distance=6cm, main node/.style={circle,draw},scale=0.4]
\tikzstyle{every node}=[font=\tiny]
\draw
(8,8) node(a) [circle, draw] {0}
(4,2) node(b) [circle, draw] {1}
(1,1) node(c) [circle, draw] {2}
(11,6) node(d) [circle, draw] {3}
(3,10) node(e) [circle, draw] {4};
\draw [->](d) to (a);
\draw [->](a) to (e);
\draw [->](e) to (c);
\draw [->](c) to (b);
\draw [->](b) to (d);
\end{tikzpicture}
\captionof{figure}{\small Convert the Euler circuit into a Hamiltonian path by skipping visited nodes}
\label{tikz}
}
\end{center}
% Two Opt
\section{Two-Opt}
After a tour was constructed using the Christofides heuristic, I applied the 2-opt improvement algorithm to optimize the path. The 2-opt algorithm examines each edge in the tour. For each edge, it looks all non-adjacent edges, and determines whether removing the two edges and reconnecting them would shorten the tour. If it does, the edges are swapped. The search continues until it no longer improves the path.
\clearpage
\begin{thebibliography}{9}
\bibitem{bib1}
Hyung-Chan An,
\emph{Improving Christofides' Algorithm for the s-t Path TSP}.
Cornell University. www.graph-magics.com/articles/euler.php.
\bibitem{bib2}
\emph{Jarnik's (Prim's) Algorithm}.
www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/GraphAlgor/primAlgor.htm.
\bibitem{bib3} wwww.seas.gwu.edu/~simhaweb/champalg/tsp/tsp.html
\bibitem{bib4}
\emph{Eulerian Path and Circuit}.
www.graph-magics.com/articles/euler.php
\end{thebibliography}
\end{document}