-
Notifications
You must be signed in to change notification settings - Fork 0
/
Retrograde Motion.nb
988 lines (973 loc) · 45.3 KB
/
Retrograde Motion.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 45165, 978]
NotebookOptionsPosition[ 44410, 957]
NotebookOutlinePosition[ 44756, 972]
CellTagsIndexPosition[ 44713, 969]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Retrograde Motion - Precursor to Heliocentrism", "Chapter",
CellChangeTimes->{{3.7044951188681192`*^9, 3.7044951488377743`*^9}, {
3.746109005402746*^9,
3.746109017119534*^9}},ExpressionUUID->"5665cf76-fcfc-4512-af53-\
8803c8a1a239"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"AU", " ", "=", " ", "1"}], ";", " ",
RowBox[{"EMDist", "=", ".5"}], ";", " ",
RowBox[{"(*", " ",
RowBox[{"Astronomical", " ", "Unit"}], " ", "*)"}], ";",
RowBox[{"yr", " ", "=", " ", "1"}], ";", " ",
RowBox[{"month", " ", "=", " ", "yr"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sun", "[", "t_", "]"}], ":=",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}]}], ";", " ",
RowBox[{
RowBox[{"Earth", "[", "t_", "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"AU", " ",
RowBox[{"Cos", "[",
RowBox[{"2", "\[Pi]", " ", "t",
RowBox[{
RowBox[{"(",
SuperscriptBox["AU",
RowBox[{
RowBox[{"-", "3"}], "/", "2"}]], ")"}], "/", "yr"}]}], "]"}]}],
",",
RowBox[{"AU", " ",
RowBox[{"Sin", "[",
RowBox[{"2", "\[Pi]", " ", "t",
RowBox[{
RowBox[{"(",
SuperscriptBox["AU",
RowBox[{
RowBox[{"-", "3"}], "/", "2"}]], ")"}], "/", "yr"}]}], "]"}]}],
",", "0"}], "}"}]}], ";", " ",
RowBox[{
RowBox[{"Planet", "[",
RowBox[{"t_", ",", "R_", ",", "\[Theta]0_"}], "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"R", " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ", "t",
RowBox[{
RowBox[{"(",
SuperscriptBox["R",
RowBox[{
RowBox[{"-", "3"}], "/", "2"}]], ")"}], "/", "yr"}]}], "+",
"\[Theta]0"}], "]"}]}], ",",
RowBox[{"R", " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"2", "\[Pi]", " ", "t", " ",
RowBox[{
RowBox[{"(",
SuperscriptBox["R",
RowBox[{
RowBox[{"-", "3"}], "/", "2"}]], ")"}], "/", "yr"}]}], "+",
"\[Theta]0"}], "]"}]}], ",", "0"}], "}"}]}], ";"}],
" "}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Moon", "[", "t_", "]"}], ":=",
RowBox[{
RowBox[{"Earth", "[", "t", "]"}], "+",
RowBox[{"{",
RowBox[{
RowBox[{"EMDist", " ",
RowBox[{"Cos", "[",
RowBox[{"2", "\[Pi]", " ", "t", " ",
RowBox[{
RowBox[{"(",
SuperscriptBox["EMDist",
RowBox[{
RowBox[{"-", "3"}], "/", "2"}]], ")"}], "/", "month"}]}], "]"}]}],
",",
RowBox[{"EMDist", " ",
RowBox[{"Sin", "[",
RowBox[{"2", "\[Pi]", " ", "t",
RowBox[{
RowBox[{"(",
SuperscriptBox["EMDist",
RowBox[{
RowBox[{"-", "3"}], "/", "2"}]], ")"}], "/", "month"}]}], "]"}]}],
",", "0"}], "}"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"SunRad", " ", "=", " ", ".5"}], ";", " ",
RowBox[{"EarthRad", " ", "=", " ", ".2"}], ";",
RowBox[{"CelSphereRad", "=",
RowBox[{"EarthRad", "+", ".15"}]}], ";", " ",
RowBox[{"PlanetRad", " ", "=", " ", ".2"}], ";", " ",
RowBox[{"MoonRad", "=", ".08"}], ";",
RowBox[{"MaxTime", "=",
RowBox[{"2", "yr"}]}], ";", " ",
RowBox[{"A", "=",
RowBox[{"(", GridBox[{
{"1", "0"},
{"0", "1"},
{"0", "0"}
}], ")"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Rot", "[", "\[Theta]_", "]"}], ":=",
RowBox[{"(", GridBox[{
{
RowBox[{"Cos", "[", "\[Theta]", "]"}],
RowBox[{"-",
RowBox[{"Sin", "[", "\[Theta]", "]"}]}]},
{
RowBox[{"Sin", "[", "\[Theta]", "]"}],
RowBox[{"Cos", "[", "\[Theta]", "]"}]}
}], ")"}]}], ";"}], " ",
RowBox[{"(*", " ",
RowBox[{"2", "x2", " ", "Rotation", " ", "Matrix"}], " ", "*)"}], ";", " ",
RowBox[{
RowBox[{"SunFixRot", "[", "t_", "]"}], " ", ":=", " ",
RowBox[{"Rot", "[",
RowBox[{
RowBox[{"(",
RowBox[{"2", "\[Pi]", " ", "t", " ",
RowBox[{
RowBox[{"(",
SuperscriptBox["AU",
RowBox[{
RowBox[{"-", "3"}], "/", "2"}]], ")"}], "/", "yr"}]}], ")"}], "-",
RowBox[{"\[Pi]", "/", "2"}]}], "]"}]}], ";", " ",
RowBox[{"Id", " ", "=", " ",
RowBox[{"(", GridBox[{
{"1", "0"},
{"0", "1"}
}], ")"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"CSProj", "[",
RowBox[{"Satellite_", ",", "Body_"}], "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"Satellite", "-", "Body"}], ")"}], ".", "A"}], ")"}], "/",
RowBox[{"Norm", "[",
RowBox[{
RowBox[{"(",
RowBox[{"Satellite", "-", "Body"}], ")"}], ".", "A"}], "]"}]}]}],
";"}], " ",
RowBox[{"(*", " ",
RowBox[{"Celestial", " ", "Sphere", " ", "Projection"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"GraphicsGrid", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"Show", "[",
RowBox[{
RowBox[{"Graphics3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Yellow", ",",
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"Sun", "[", "T", "]"}], ",", "SunRad"}], "]"}], ",",
"Blue", ",",
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"Earth", "[", "T", "]"}], ",", "EarthRad"}], "]"}],
",", "Red", ",",
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"Planet", "[",
RowBox[{"T", ",", "R", ",", "\[Theta]0"}], "]"}], ",",
"PlanetRad"}], "]"}], ",", "Gray", ",",
RowBox[{"If", "[",
RowBox[{"MoonOn", ",",
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"Moon", "[", "T", "]"}], ",", "MoonRad"}], "]"}],
",",
RowBox[{"{", "}"}]}], "]"}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Max", "[",
RowBox[{"R", ",", "AU"}], "]"}]}], "-",
RowBox[{"Max", "[",
RowBox[{"PlanetRad", ",", "EarthRad"}], "]"}]}], ",",
RowBox[{
RowBox[{"Max", "[",
RowBox[{"R", ",", "AU"}], "]"}], "+",
RowBox[{"Max", "[",
RowBox[{"PlanetRad", ",", "EarthRad"}], "]"}]}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Max", "[",
RowBox[{"R", ",", "AU"}], "]"}]}], "-",
RowBox[{"Max", "[",
RowBox[{"PlanetRad", ",", "EarthRad"}], "]"}]}], ",",
RowBox[{
RowBox[{"Max", "[",
RowBox[{"R", ",", "AU"}], "]"}], "+",
RowBox[{"Max", "[",
RowBox[{"PlanetRad", ",", "EarthRad"}], "]"}]}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1.5"}], "SunRad"}], ",",
RowBox[{"1.5", "SunRad"}]}], "}"}]}], "}"}]}]}], "]"}], ",",
RowBox[{"If", "[",
RowBox[{"CelestialSphereOn", ",",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{"Cyan", ",",
RowBox[{"Opacity", "[", ".5", "]"}], ",",
RowBox[{"Sphere", "[",
RowBox[{
RowBox[{"Earth", "[", "T", "]"}], ",", "CelSphereRad"}],
"]"}]}], "}"}], "]"}], ",",
RowBox[{"{", "}"}]}], "]"}], ",",
RowBox[{"If", "[",
RowBox[{"CelestialSphereOn", ",",
RowBox[{"ParametricPlot3D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sun", "[", "T", "]"}], "\[Alpha]"}], "+",
RowBox[{
RowBox[{"Earth", "[", "T", "]"}],
RowBox[{"(",
RowBox[{"1", "-", "\[Alpha]"}], ")"}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"Planet", "[",
RowBox[{"T", ",", "R", ",", "\[Theta]0"}], "]"}],
"\[Alpha]"}], "+",
RowBox[{
RowBox[{"Earth", "[", "T", "]"}],
RowBox[{"(",
RowBox[{"1", "-", "\[Alpha]"}], ")"}]}]}], ",",
RowBox[{"If", "[",
RowBox[{"MoonOn", ",",
RowBox[{
RowBox[{
RowBox[{"Moon", "[", "T", "]"}], "\[Alpha]"}], "+",
RowBox[{
RowBox[{"Earth", "[", "T", "]"}],
RowBox[{"(",
RowBox[{"1", "-", "\[Alpha]"}], ")"}]}]}], ",",
RowBox[{"{", "}"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Alpha]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thickness", "[", ".008", "]"}], "}"}]}]}], "]"}],
",",
RowBox[{"{", "}"}]}], "]"}]}], "]"}], ",",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{
RowBox[{"CSProj", "[",
RowBox[{
RowBox[{"Sun", "[", "T", "]"}], ",",
RowBox[{"Earth", "[", "T", "]"}]}], "]"}], ".",
RowBox[{"If", "[",
RowBox[{"MidnightFix", ",",
RowBox[{"SunFixRot", "[", "T", "]"}], ",", "Id"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "1.2"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", ".02", "]"}], ",", "Yellow"}],
"}"}]}]}], "]"}], ",",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{
RowBox[{"CSProj", "[",
RowBox[{
RowBox[{"Planet", "[",
RowBox[{"T", ",", "R", ",", "\[Theta]0"}], "]"}], ",",
RowBox[{"Earth", "[", "T", "]"}]}], "]"}], ".",
RowBox[{"If", "[",
RowBox[{"MidnightFix", ",",
RowBox[{"SunFixRot", "[", "T", "]"}], ",", "Id"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "1.2"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", ".02", "]"}], ",", "Red"}],
"}"}]}]}], "]"}], ",",
RowBox[{"If", "[",
RowBox[{"MoonOn", ",",
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{
RowBox[{"CSProj", "[",
RowBox[{
RowBox[{"Moon", "[", "T", "]"}], ",",
RowBox[{"Earth", "[", "T", "]"}]}], "]"}], ".",
RowBox[{"If", "[",
RowBox[{"MidnightFix", ",",
RowBox[{"SunFixRot", "[", "T", "]"}], ",", "Id"}], "]"}]}],
",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "1.2"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Thickness", "[", ".02", "]"}], ",", "Gray"}],
"}"}]}]}], "]"}], ",",
RowBox[{"{", "}"}]}], "]"}], ",",
RowBox[{"If", "[",
RowBox[{"CelestialSphereOn", ",",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Opacity", "[", ".5", "]"}], ",", "Cyan", ",",
RowBox[{"Circle", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}], ",", "1"}], "]"}]}], "}"}],
"]"}], ",",
RowBox[{"{", "}"}]}], "]"}], ",",
RowBox[{"If", "[",
RowBox[{"MidnightFix", ",",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Text", "[",
RowBox[{
"\"\<\!\(\*StyleBox[\"Midnight\",FontWeight->\"Bold\"]\)\>\"",
",",
RowBox[{"{",
RowBox[{".15", ",", "1.1"}], "}"}]}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{
"\"\<\!\(\*StyleBox[\"Noon\",FontWeight->\"Bold\"]\)\>\"",
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", ".1"}], ",",
RowBox[{"-", "1.1"}]}], "}"}]}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{
"\"\<\!\(\*StyleBox[\"6\",FontWeight->\"Bold\"]\)\!\(\*\
StyleBox[\" \
\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"AM\",FontWeight->\"Bold\"]\)\>\"",
",",
RowBox[{"{",
RowBox[{"1.12", ",",
RowBox[{"-", ".1"}]}], "}"}]}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{
"\"\<\!\(\*StyleBox[\"6\",FontWeight->\"Bold\"]\)\!\(\*\
StyleBox[\" \
\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"PM\",FontWeight->\"Bold\"]\)\>\"",
",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.1"}], ",", ".1"}], "}"}]}], "]"}]}], "}"}],
"]"}], ",",
RowBox[{"{", "}"}]}], "]"}], ",",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Blue", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Rot", "[",
RowBox[{"\[Pi]", "/", "2"}], "]"}], ".",
RowBox[{"CSProj", "[",
RowBox[{
RowBox[{"Sun", "[", "T", "]"}], ",",
RowBox[{"Earth", "[", "T", "]"}]}], "]"}], ".",
RowBox[{"If", "[",
RowBox[{"MidnightFix", ",",
RowBox[{"SunFixRot", "[", "T", "]"}], ",", "Id"}], "]"}]}],
",",
RowBox[{
RowBox[{"Rot", "[",
RowBox[{
RowBox[{"-", "\[Pi]"}], "/", "2"}], "]"}], ".",
RowBox[{"CSProj", "[",
RowBox[{
RowBox[{"Sun", "[", "T", "]"}], ",",
RowBox[{"Earth", "[", "T", "]"}]}], "]"}], ".",
RowBox[{"If", "[",
RowBox[{"MidnightFix", ",",
RowBox[{"SunFixRot", "[", "T", "]"}], ",", "Id"}],
"]"}]}]}], "}"}], "]"}]}], "}"}], "]"}]}], "]"}]}], "}"}],
"}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "800"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"T", ",", "0", ",", "\"\<Time\>\""}], "}"}], ",", "0", ",",
"MaxTime"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"R", ",",
RowBox[{"2", "*", "AU"}], ",", "\"\<Orbital Radius\>\""}], "}"}], ",",
RowBox[{".1", "*", "AU"}], ",",
RowBox[{"3", "*", "AU"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]0", ",", "0", ",", "\"\<Initial Planet Position\>\""}],
"}"}], ",", "0", ",",
RowBox[{"2", "*", "\[Pi]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"CelestialSphereOn", ",", "True", ",", "\"\<Celestial Sphere\>\""}],
"}"}], ",",
RowBox[{"{",
RowBox[{"True", ",", "False"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"MoonOn", ",", "False", ",", "\"\<Moon\>\""}], "}"}], ",",
RowBox[{"{",
RowBox[{"True", ",", "False"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"MidnightFix", ",", "False", ",", "\"\<Fix at Midnight\>\""}],
"}"}], ",",
RowBox[{"{",
RowBox[{"True", ",", "False"}], "}"}]}], "}"}], ",",
RowBox[{"Button", "[",
RowBox[{"\"\<Reset\>\"", ",",
RowBox[{"{",
RowBox[{
RowBox[{"T", "=", "0"}], ",",
RowBox[{"R", "=",
RowBox[{"2", "*", "AU"}]}], ",",
RowBox[{"\[Theta]0", "=", "0"}], ",",
RowBox[{"CelestialSphereOn", "=", "True"}], ",",
RowBox[{"MidnightFix", "=", "False"}]}], "}"}]}], "]"}], ",",
RowBox[{"ControlPlacement", "\[Rule]", "Left"}]}], "]"}]}], "Input",
CellChangeTimes->{
3.704495130200058*^9, {3.704495162670004*^9, 3.7044952599933*^9}, {
3.7044953016650963`*^9, 3.704495496138617*^9}, {3.704495709013866*^9,
3.7044959021254997`*^9}, {3.7044959481018953`*^9,
3.7044959912585363`*^9}, {3.7044960348348503`*^9, 3.704496117332847*^9}, {
3.704496563146634*^9, 3.704496570058001*^9}, {3.7044966846483088`*^9,
3.704496772700734*^9}, {3.704496846908347*^9, 3.704496868498267*^9}, {
3.70449696236747*^9, 3.7044970025647287`*^9}, 3.7044970537272882`*^9, {
3.7044971510900183`*^9, 3.704497185447686*^9}, {3.704497278751747*^9,
3.704497282668334*^9}, {3.704497338593655*^9, 3.7044974195295963`*^9}, {
3.7044975683257236`*^9, 3.704497614156481*^9}, {3.704497656337915*^9,
3.704497673015807*^9}, {3.704497954310349*^9, 3.70449797605999*^9}, {
3.704498178908338*^9, 3.704498404555107*^9}, {3.704498811044389*^9,
3.704498861672744*^9}, {3.7044988917704144`*^9, 3.70449889841551*^9}, {
3.704498959293621*^9, 3.704499042896022*^9}, {3.704499081123164*^9,
3.704499208287774*^9}, {3.704499919413176*^9, 3.704499936058683*^9}, {
3.704500069350716*^9, 3.7045000702858677`*^9}, {3.704501039538348*^9,
3.7045011124235477`*^9}, {3.70450115128174*^9, 3.704501201350504*^9}, {
3.704501242121552*^9, 3.70450132156256*^9}, {3.7045015191144447`*^9,
3.70450153257137*^9}, {3.7045015825871964`*^9, 3.704501592117392*^9}, {
3.704501709938393*^9, 3.704501735016433*^9}, {3.704501855831588*^9,
3.704501856323744*^9}, {3.704502161859015*^9, 3.704502201124419*^9}, {
3.7045070278242807`*^9, 3.704507221896202*^9}, {3.7045072625130672`*^9,
3.704507317077795*^9}, {3.704507351828815*^9, 3.704507379675949*^9}, {
3.704507886453373*^9, 3.704507928592825*^9}, {3.704508062822434*^9,
3.7045081415382967`*^9}, {3.704508182560876*^9, 3.70450834776326*^9}, {
3.7045083867077923`*^9, 3.704508408962579*^9}, {3.704508479342042*^9,
3.704508577763208*^9}, {3.70450861545119*^9, 3.704508830715292*^9}, {
3.704508882427204*^9, 3.704508996757873*^9}, {3.704509069037243*^9,
3.704509111553968*^9}, {3.7045092136467657`*^9, 3.7045094554146023`*^9}, {
3.7045094909895697`*^9, 3.704509691030821*^9}, {3.7045097702592287`*^9,
3.7045098752172203`*^9}, {3.704509916265188*^9, 3.704509942662681*^9}, {
3.704509973102831*^9, 3.704510152231798*^9}, {3.704510239414629*^9,
3.704510252294119*^9}, {3.704657824372855*^9, 3.7046578314336977`*^9}, {
3.704658435123569*^9, 3.704658447849205*^9}, {3.7046684327804747`*^9,
3.70466845498517*^9}, {3.704669251671399*^9, 3.7046692620690737`*^9}, {
3.704669342544907*^9, 3.704669442278442*^9}, {3.704669496068432*^9,
3.7046695141882753`*^9}, {3.704669560660348*^9, 3.704669561114997*^9}, {
3.704669702047576*^9, 3.704669792476779*^9}, {3.704669872025629*^9,
3.704669938581172*^9}, {3.704670051521591*^9, 3.7046702644162207`*^9}, {
3.7046703051224422`*^9, 3.704670374310246*^9}, {3.704670438967709*^9,
3.7046704667071447`*^9}, {3.704670525787422*^9, 3.70467058178516*^9}, {
3.704670638965137*^9, 3.704670639185309*^9}, {3.704670705529628*^9,
3.704670727121442*^9}, {3.70467084097611*^9, 3.704670859725939*^9}, {
3.7046708943004427`*^9, 3.704670965857841*^9}, {3.7046710042196198`*^9,
3.704671182808579*^9}, {3.7046712673154*^9, 3.704671278870273*^9}, {
3.704671317808189*^9, 3.704671353380848*^9}, {3.704671409435264*^9,
3.7046714727919416`*^9}, {3.7046715321831493`*^9, 3.70467156446138*^9}, {
3.704671609227393*^9, 3.704671632770219*^9}, {3.704671670724208*^9,
3.704671670971925*^9}, {3.704671707137095*^9, 3.704671768709001*^9}, {
3.704683828375875*^9, 3.7046838758583603`*^9}, {3.704683921078104*^9,
3.7046839462257442`*^9}, {3.704684045201064*^9, 3.704684069164563*^9}, {
3.7046841027015038`*^9, 3.704684103580742*^9}, {3.7046844117382383`*^9,
3.704684430616024*^9}, {3.704684492671727*^9, 3.704684562051651*^9}, {
3.704684667393729*^9, 3.704684741697692*^9}, {3.704685163512039*^9,
3.704685220433803*^9}, {3.70468530222672*^9, 3.7046853048331423`*^9}, {
3.7046855453631277`*^9, 3.704685546840597*^9}, {3.704765034094535*^9,
3.70476508036485*^9}, {3.704765182694141*^9, 3.704765281504125*^9}, {
3.704765333091062*^9, 3.7047653345144787`*^9}, {3.704765368457223*^9,
3.704765513534917*^9}, {3.704817888687427*^9, 3.704817949711793*^9}, {
3.704890615874501*^9, 3.704890648567583*^9}, {3.704890684153998*^9,
3.7048909336387444`*^9}, {3.704891012230727*^9, 3.704891030547873*^9}, {
3.704891073987105*^9, 3.7048912025313*^9}, {3.705057567878662*^9,
3.705057591298646*^9}, {3.705057632393194*^9, 3.705057688670512*^9}, {
3.705057719849393*^9, 3.705057738926529*^9}, {3.705057773116807*^9,
3.705057775978305*^9}, {3.70505877241402*^9, 3.7050587819310513`*^9}, {
3.705058840890728*^9, 3.705058845009124*^9}, {3.705058972002651*^9,
3.705058972608127*^9}, {3.705059124148901*^9, 3.7050593819904737`*^9}, {
3.705059913140444*^9, 3.705060104036256*^9}, {3.705060164730612*^9,
3.705060165354286*^9}, {3.705060212138089*^9, 3.705060249277183*^9}, {
3.70506028054031*^9, 3.7050602889942503`*^9}, {3.7050603218823547`*^9,
3.705060342184218*^9}, {3.705060419011294*^9, 3.705060452732164*^9}, {
3.705060533628023*^9, 3.705060534713378*^9}, {3.705060760501669*^9,
3.705060767589642*^9}, {3.7050608537794523`*^9, 3.705060967917728*^9}, {
3.70506108749129*^9, 3.705061115921319*^9}, {3.705061294286628*^9,
3.7050613448509274`*^9}, {3.7050613956028347`*^9,
3.7050614244452953`*^9}, {3.705141656292753*^9, 3.705141657717519*^9}, {
3.705141842774695*^9, 3.705141853531885*^9}, {3.752811514031454*^9,
3.75281168462191*^9}},ExpressionUUID->"59d9e4e7-fa2e-42f4-ba8a-\
89e172018d6f"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`CelestialSphereOn$$ =
True, $CellContext`MidnightFix$$ = False, $CellContext`MoonOn$$ =
False, $CellContext`R$$ = 2, $CellContext`T$$ =
0.795, $CellContext`\[Theta]0$$ = 0, Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`T$$], 0, "Time"}, 0, 2}, {{
Hold[$CellContext`R$$], 2, "Orbital Radius"}, 0.1, 3}, {{
Hold[$CellContext`\[Theta]0$$], 0, "Initial Planet Position"}, 0, 2
Pi}, {{
Hold[$CellContext`CelestialSphereOn$$], True, "Celestial Sphere"}, {
True, False}}, {{
Hold[$CellContext`MoonOn$$], False, "Moon"}, {True, False}}, {{
Hold[$CellContext`MidnightFix$$], False, "Fix at Midnight"}, {
True, False}}, {
Hold[
Button[
"Reset", {$CellContext`T$$ = 0, $CellContext`R$$ =
2 $CellContext`AU, $CellContext`\[Theta]0$$ =
0, $CellContext`CelestialSphereOn$$ =
True, $CellContext`MidnightFix$$ = False}]],
Manipulate`Dump`ThisIsNotAControl}}, Typeset`size$$ = {
800., {206., 212.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = True, $CellContext`T$4783$$ =
0, $CellContext`R$4784$$ = 0, $CellContext`\[Theta]0$4785$$ =
0, $CellContext`CelestialSphereOn$4786$$ =
False, $CellContext`MoonOn$4787$$ =
False, $CellContext`MidnightFix$4788$$ = False},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`CelestialSphereOn$$ =
True, $CellContext`MidnightFix$$ = False, $CellContext`MoonOn$$ =
False, $CellContext`R$$ = 2, $CellContext`T$$ =
0, $CellContext`\[Theta]0$$ = 0}, "ControllerVariables" :> {
Hold[$CellContext`T$$, $CellContext`T$4783$$, 0],
Hold[$CellContext`R$$, $CellContext`R$4784$$, 0],
Hold[$CellContext`\[Theta]0$$, $CellContext`\[Theta]0$4785$$, 0],
Hold[$CellContext`CelestialSphereOn$$, \
$CellContext`CelestialSphereOn$4786$$, False],
Hold[$CellContext`MoonOn$$, $CellContext`MoonOn$4787$$, False],
Hold[$CellContext`MidnightFix$$, $CellContext`MidnightFix$4788$$,
False]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :> GraphicsGrid[{{
Show[
Graphics3D[{Yellow,
Sphere[
$CellContext`Sun[$CellContext`T$$], $CellContext`SunRad], Blue,
Sphere[
$CellContext`Earth[$CellContext`T$$], $CellContext`EarthRad],
Red,
Sphere[
$CellContext`Planet[$CellContext`T$$, $CellContext`R$$, \
$CellContext`\[Theta]0$$], $CellContext`PlanetRad], Gray,
If[$CellContext`MoonOn$$,
Sphere[
$CellContext`Moon[$CellContext`T$$], $CellContext`MoonRad], \
{}]}, PlotRange -> {{-Max[$CellContext`R$$, $CellContext`AU] -
Max[$CellContext`PlanetRad, $CellContext`EarthRad],
Max[$CellContext`R$$, $CellContext`AU] +
Max[$CellContext`PlanetRad, $CellContext`EarthRad]}, {-
Max[$CellContext`R$$, $CellContext`AU] -
Max[$CellContext`PlanetRad, $CellContext`EarthRad],
Max[$CellContext`R$$, $CellContext`AU] +
Max[$CellContext`PlanetRad, $CellContext`EarthRad]}, {(-1.5) \
$CellContext`SunRad, 1.5 $CellContext`SunRad}}],
If[$CellContext`CelestialSphereOn$$,
Graphics3D[{Cyan,
Opacity[0.5],
Sphere[
$CellContext`Earth[$CellContext`T$$], \
$CellContext`CelSphereRad]}], {}],
If[$CellContext`CelestialSphereOn$$,
ParametricPlot3D[{$CellContext`Sun[$CellContext`T$$] \
$CellContext`\[Alpha] + $CellContext`Earth[$CellContext`T$$] (
1 - $CellContext`\[Alpha]), \
$CellContext`Planet[$CellContext`T$$, $CellContext`R$$, \
$CellContext`\[Theta]0$$] $CellContext`\[Alpha] + \
$CellContext`Earth[$CellContext`T$$] (1 - $CellContext`\[Alpha]),
If[$CellContext`MoonOn$$, $CellContext`Moon[$CellContext`T$$] \
$CellContext`\[Alpha] + $CellContext`Earth[$CellContext`T$$] (
1 - $CellContext`\[Alpha]), {}]}, {$CellContext`\[Alpha], 0,
1}, PlotStyle -> {
Thickness[0.008]}], {}]],
Show[
ParametricPlot[
Dot[
$CellContext`CSProj[
$CellContext`Sun[$CellContext`T$$],
$CellContext`Earth[$CellContext`T$$]],
If[$CellContext`MidnightFix$$,
$CellContext`SunFixRot[$CellContext`T$$], $CellContext`Id]], \
{$CellContext`x, 0, 1}, PlotRange -> 1.2, PlotStyle -> {
Thickness[0.02], Yellow}],
ParametricPlot[
Dot[
$CellContext`CSProj[
$CellContext`Planet[$CellContext`T$$, $CellContext`R$$, \
$CellContext`\[Theta]0$$],
$CellContext`Earth[$CellContext`T$$]],
If[$CellContext`MidnightFix$$,
$CellContext`SunFixRot[$CellContext`T$$], $CellContext`Id]], \
{$CellContext`x, 0, 1}, PlotRange -> 1.2, PlotStyle -> {
Thickness[0.02], Red}],
If[$CellContext`MoonOn$$,
ParametricPlot[
Dot[
$CellContext`CSProj[
$CellContext`Moon[$CellContext`T$$],
$CellContext`Earth[$CellContext`T$$]],
If[$CellContext`MidnightFix$$,
$CellContext`SunFixRot[$CellContext`T$$], $CellContext`Id]], \
{$CellContext`x, 0, 1}, PlotRange -> 1.2, PlotStyle -> {
Thickness[0.02], Gray}], {}],
If[$CellContext`CelestialSphereOn$$,
Graphics[{
Opacity[0.5], Cyan,
Circle[{0, 0}, 1]}], {}],
If[$CellContext`MidnightFix$$,
Graphics[{
Text[
"\!\(\*StyleBox[\"Midnight\",FontWeight->\"Bold\"]\)", {0.15,
1.1}],
Text[
"\!\(\*StyleBox[\"Noon\",FontWeight->\"Bold\"]\)", {-0.1, \
-1.1}],
Text[
"\!\(\*StyleBox[\"6\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\" \
\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"AM\",FontWeight->\"Bold\"]\)", {
1.12, -0.1}],
Text[
"\!\(\*StyleBox[\"6\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\" \
\",FontWeight->\"Bold\"]\)\!\(\*StyleBox[\"PM\",FontWeight->\"Bold\"]\)", \
{-1.1, 0.1}]}], {}],
Graphics[{Blue,
Line[{
Dot[
$CellContext`Rot[Pi/2],
$CellContext`CSProj[
$CellContext`Sun[$CellContext`T$$],
$CellContext`Earth[$CellContext`T$$]],
If[$CellContext`MidnightFix$$,
$CellContext`SunFixRot[$CellContext`T$$], $CellContext`Id]],
Dot[
$CellContext`Rot[(-Pi)/2],
$CellContext`CSProj[
$CellContext`Sun[$CellContext`T$$],
$CellContext`Earth[$CellContext`T$$]],
If[$CellContext`MidnightFix$$,
$CellContext`SunFixRot[$CellContext`T$$], \
$CellContext`Id]]}]}]]}}, ImageSize -> 800],
"Specifications" :> {{{$CellContext`T$$, 0, "Time"}, 0,
2}, {{$CellContext`R$$, 2, "Orbital Radius"}, 0.1,
3}, {{$CellContext`\[Theta]0$$, 0, "Initial Planet Position"}, 0, 2
Pi}, {{$CellContext`CelestialSphereOn$$, True, "Celestial Sphere"}, {
True, False}}, {{$CellContext`MoonOn$$, False, "Moon"}, {
True, False}}, {{$CellContext`MidnightFix$$, False,
"Fix at Midnight"}, {True, False}},
Button[
"Reset", {$CellContext`T$$ = 0, $CellContext`R$$ =
2 $CellContext`AU, $CellContext`\[Theta]0$$ =
0, $CellContext`CelestialSphereOn$$ =
True, $CellContext`MidnightFix$$ = False}]},
"Options" :> {ControlPlacement -> Left}, "DefaultOptions" :> {}],
ImageSizeCache->{1182., {238., 244.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{{3.704890862448406*^9, 3.7048909068729897`*^9},
3.7048910316545763`*^9, {3.704891094999756*^9, 3.7048911468708344`*^9}, {
3.70489117760999*^9, 3.7048912038632183`*^9}, 3.705057526780542*^9, {
3.705057653168727*^9, 3.705057690773487*^9}, {3.705057722326174*^9,
3.705057740287925*^9}, 3.705057777233657*^9, 3.705058788160182*^9,
3.705058846883945*^9, 3.705058976531019*^9, 3.705059210766204*^9,
3.705059299449422*^9, 3.7050593547057*^9, 3.705059870929702*^9, {
3.705059914483199*^9, 3.705059918728731*^9}, {3.705060076458774*^9,
3.705060105557453*^9}, {3.705060139686172*^9, 3.705060166613443*^9}, {
3.705060229461046*^9, 3.705060250012598*^9}, 3.705060290669053*^9, {
3.705060331196541*^9, 3.705060343574821*^9}, 3.7050604596509333`*^9,
3.705060535983534*^9, 3.705060768755444*^9, {3.7050608664024754`*^9,
3.705060969109778*^9}, 3.7050611215350313`*^9, 3.705061352246543*^9,
3.70506142637357*^9, 3.7050831864334097`*^9, 3.7051415237810907`*^9, {
3.705141658813085*^9, 3.705141670935919*^9}, 3.7051417258591213`*^9,
3.708302060401486*^9, 3.7342526634706306`*^9, 3.73781475257873*^9,
3.7447303545441523`*^9, 3.746099131818672*^9, 3.7461052964533987`*^9,
3.752811738937958*^9,
3.7760344366252165`*^9},ExpressionUUID->"fb8809f7-0732-4cf7-8a08-\
e3a09e79d645"]
}, Open ]],
Cell[TextData[{
StyleBox["Retrograde Motion",
FontWeight->"Bold"],
"\nRetrograde motion is the phenomenon where over the course of time, on the \
scale of years, a planet will move in your sky in generally an arc but \
sometimes move backwards for a few days and then start moving in the normal \
direction again. This is called retrograde motion and is utterly \
unexplainable by a planetary model where Earth is at the center of the Solar \
System and everything revolves around it.\n",
StyleBox["Circular Planetary Orbits\n",
FontWeight->"Bold"],
"The left model shows the Sun, Earth, and some other Planet all rotating in \
the same plane. The orbit of the planet can be controlled by the Orbital \
Radius slider and the Initial Position slider, which places the planet at an \
initial angle around the sun from 0 to 2\[Pi]. By Newton\[CloseCurlyQuote]s \
Third Law, the force of gravity between the Sun and a planet is in magnitude \
the centripetal force for circular motion, so",
StyleBox[" ",
FontSlant->"Italic"],
Cell[BoxData[
FormBox[
RowBox[{
FractionBox[
RowBox[{
SubscriptBox["Gm", "1"],
StyleBox[
SubscriptBox["m", "2"],
FontSlant->"Italic"]}],
SuperscriptBox["r", "2"]], "="}], TraditionalForm]],
FontSlant->"Italic",ExpressionUUID->"bd536ddf-84e0-4a74-9217-a7a1b6683bfb"],
" ",
Cell[BoxData[
FormBox[
FractionBox[
RowBox[{
SubscriptBox["m", "1"],
SuperscriptBox["v", "2"]}], "r"], TraditionalForm]],ExpressionUUID->
"08d34257-1857-4df4-85a9-01005bdf95c6"],
" \[Implies] v = ",
Cell[BoxData[
FormBox[
SqrtBox[
RowBox[{
SubscriptBox["Gm", "2"], "/", "r"}]], TraditionalForm]],ExpressionUUID->
"a89fefe2-8510-461c-99a9-965331f8bcea"],
", that is, the tangential velocity of the planet and therefore the orbital \
period of the planet is completely determined by the radius at which the \
circular orbit is occurring, meaning that the Orbital Radius slider is the \
only one we need to talk about all circular orbits, both closer to the Sun \
than Earth and farther.\n",
StyleBox["The Celestial Sphere",
FontWeight->"Bold"],
"\nThe Celestial Sphere, as can be turned on with the check box, is the sky \
of the planet it\[CloseCurlyQuote]s surrounding. The lines connecting every \
body in the sky to the center of the Earth intersects the Celestial Sphere at \
one point, which is the point in the sky you would see if you looked up. The \
right model shows the projection of the objects in space onto the celestial \
sphere. Here the sizes of the objects don\[CloseCurlyQuote]t matter, the \
planet and the Sun show up as the same sized dots on the celestial sphere; \
back when retrograde motion was first noticed it is definitely plausible that \
their equipment was nowhere near sophisticated enough to measure the changes \
in sizes of celestial bodies over the course of a few years, meaning that a \
point in the sky is all they have to go off of anyway.\n",
StyleBox["Not to Scale\n",
FontWeight->"Bold"],
"Making the sizes of bodies relative to each other to scale doesn\
\[CloseCurlyQuote]t work for this model, as the Sun would be one million \
times bigger than the Earth, which, when scaled to fit the model, would make \
the Earth invisible. Scaling for distance also doesn\[CloseCurlyQuote]t make \
sense, as even for the Sun, a very large object, it might only barely appear \
in the model if the distances were accurate, that is, the diameter of the Sun \
is less than 900,000 miles, 1/100th the 93 million miles from the Earth to \
the Sun. Finally the Moon\[CloseCurlyQuote]s orbital period cannot be \
accurate, as the Moon going around the Earth 13.4 times a year would be way \
too sensitive, the time slider would have to be slid extremely carefully to \
be able to see the Moon moving as opposed to jumping around the Earth.\n",
StyleBox["Explanation of Retrograde Motion\n",
FontWeight->"Bold"],
"When we move the time slider, or alternatively hit play on the time \
animation (slowing it down is advised), we can see night to night the red \
planet moving along Earth\[CloseCurlyQuote]s sky counter-clockwise. The Sun \
is also moving counter-clockwise, as is the moon. The apparent similarity in \
behaviour could plausibly lead one to believe that Earth is at the center of \
the solar system. However, we see that at some point in the year, the red \
planet moves backwards in our sky for a while, and the continues on its \
counterclockwise trajectory. This retrograde motion cannot be explained by \
models putting Earth as the center of the solar system. By inspecting the \
left model in real time as the retrograde motion unfolds on the right model, \
we see that retrograde motion is really the effect of the Earth ",
StyleBox["passing",
FontSlant->"Italic"],
" the red planet in its orbit, this makes it clear how why a parallax effect \
is coming in to play. Parallax is the phenomenon by which an object appears \
to move with respect to the background. As we are catching up to the red \
planet in the orbit, it moves somewhat circularly (this, too, is not obvious \
- the model shows us though how early astronomers made the mistake, as it \
looks awfully similar to how the moon goes around us), but when we pass it \
the parallax effect takes over and the projection of the planet onto the \
celestial sphere moves backwards for a while. This model also allows us to \
visualize why retrograde motion occurs when the planet is both farther away \
and closer to the Sun than Earth is.",
StyleBox["\nFixing at Midnight\n",
FontWeight->"Bold"],
"The horizontal blue line is the horizon. Time of day is really a measure of \
where on the planet you are standing, so by midnight I really mean opposite \
the Sun, and by horizon I mean the diameter of Earth perpendicular to the \
vector connecting the Sun and Earth, which can be thought of as the line \
connecting the positions of 6pm and 6am. When we fix at midnight and place \
the planet farther from the Sun than the Earth is, we do not see the planet \
move backwards on the projection - this is because when we don\
\[CloseCurlyQuote]t fix the horizon, it\[CloseCurlyQuote]s moving at a speed \
faster than the planet\[CloseCurlyQuote]s negative movement speed when it \
goes backward; fixing the horizon is equivalent to rotating everything by the \
opposite of the inclination of the horizon, so the planet\[CloseCurlyQuote]s \
motion will always be in the same direction. The way to interpret retrograde \
motion here is by the slowing down of the red dot on the projection, which is \
hard to see on this model. The inner planet still does though show the \
retrograde motion on the projection when we fix at midnight. We could get \
this more obvious effect for the outer planet if we increased the speed \
(reduced the period) of its orbit.",
StyleBox["\nA Brief History of Heliocentrism\n",
FontWeight->"Bold"],
"In short, Copernicus designed a model where the Earth is not the center of \
the solar system but rather the Sun is. His measurements allowed for \
predictions that matched the precision of the previously established \
geocentric Ptolemaic system, but additionally gave an explanation for \
retrograde motion.\n\n",
StyleBox["A note on the code\n",
FontWeight->"Bold"],
"This notebook was created for expository purposes, to explain retrograde \
motion, rather than to showcase the code - consequently the code is rather \
dense and not particularly friendly to read. The variable decelerations at \
the top before the Manipulate function tell most of the story. The left model \
uses Graphics3D where the bodies are Spheres with a predetermined radius and \
a center that is a vector determined by a function that takes as argument the \
manipulated variable T. The rotation of these vectors is done with a 2x2 \
rotation matrix - the 3D model is inherently 2D mathematically speaking as \
all of the orbits lie in one plane. The right model is literally a projection \
of the left model, using the projection function CSProj defined in the top. \
Everything inside the Manipulate is to draw everything and allow for options \
- all of the options are If statements for turning things on and off (like \
the Celestial Sphere checkbox) and in the case of fixing at midnight a \
rotation matrix inside of an If statement, that is applied only if the Fix at \
Midnight checkbox is checked."
}], "Text",
CellChangeTimes->{{3.7045102698326263`*^9, 3.704511147053228*^9}, {
3.704511211915805*^9, 3.7045112130404882`*^9}, {3.704684787746043*^9,
3.704685066119755*^9}, {3.7048180611254673`*^9, 3.704818064851819*^9}, {
3.746099554370105*^9, 3.7460995566501303`*^9}, {3.746099623584227*^9,
3.746099696131976*^9}, {3.746099827449853*^9, 3.7460998482294807`*^9}, {
3.746107035114623*^9, 3.746107044488759*^9}, {3.746108352171938*^9,
3.746108591449332*^9}, {3.746109024931633*^9, 3.746109077336501*^9}, {
3.746109113936874*^9, 3.7461093175996323`*^9}, {3.7461093641951838`*^9,
3.7461094136099377`*^9}, 3.7461101726018877`*^9, {3.746110246493361*^9,
3.7461102698074512`*^9}, {3.7461103314342003`*^9, 3.74611055448482*^9}, {
3.746110586726343*^9, 3.7461105891240396`*^9}, {3.746110631092414*^9,
3.746110688078293*^9}, {3.7461108594417753`*^9, 3.7461109438178997`*^9}, {
3.7461109913156137`*^9, 3.746111047603195*^9}, {3.7461110890677423`*^9,
3.746111386704165*^9}},ExpressionUUID->"6aec5d7e-a451-46dc-bacb-\
a343680303f7"],
Cell[TextData[StyleBox["Ajeet Gary - University of Maryland Experimental \
Geometry Lab\nCreated: May 30th, 2017\nLast Updated: September 16th, 2018",
FontFamily->"Calibri",
FontSize->14,
FontWeight->"Bold",
FontColor->RGBColor[0.9688410772869459, 0., 0.04487678339818418]]], "Section",
CellChangeTimes->{{3.744720759361576*^9, 3.744720769654295*^9}, {
3.744720816813613*^9, 3.7447208223929443`*^9}, {3.744720856164445*^9,
3.744720891474593*^9}, {3.744838141121181*^9, 3.744838147182004*^9}, {
3.7455144445849237`*^9, 3.745514445699499*^9}, {3.7460997875592747`*^9,
3.746099798005487*^9}, {3.746110812006076*^9, 3.7461108372935534`*^9}},
TextAlignment->Right,ExpressionUUID->"1670858c-29ee-43bd-8de2-e83bae1c92f1"]
}, Open ]]
},
WindowSize->{1385, 785},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"11.2 for Microsoft Windows (64-bit) (September 10, 2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 244, 4, 67, "Chapter",ExpressionUUID->"5665cf76-fcfc-4512-af53-8803c8a1a239"],
Cell[CellGroupData[{
Cell[849, 30, 23097, 544, 492, "Input",ExpressionUUID->"59d9e4e7-fa2e-42f4-ba8a-89e172018d6f"],
Cell[23949, 576, 10181, 203, 501, "Output",ExpressionUUID->"fb8809f7-0732-4cf7-8a08-e3a09e79d645"]
}, Open ]],
Cell[34145, 782, 9516, 159, 1020, "Text",ExpressionUUID->"6aec5d7e-a451-46dc-bacb-a343680303f7"],
Cell[43664, 943, 730, 11, 70, "Section",ExpressionUUID->"1670858c-29ee-43bd-8de2-e83bae1c92f1"]
}, Open ]]
}
]
*)
(* End of internal cache information *)