Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

gpu setting #323

Open
samqin123 opened this issue Oct 29, 2024 · 1 comment
Open

gpu setting #323

samqin123 opened this issue Oct 29, 2024 · 1 comment

Comments

@samqin123
Copy link

samqin123 commented Oct 29, 2024

I've revised the setting.py as below, but when running marker or marker_single, still it works under CPU mode.
----reivsion ---
line10:
class Settings(BaseSettings):
# General
TORCH_DEVICE: Optional[str] = "cuda"
.....

---end-----

running status log:

(surya) E:\marker>marker E:\pdf E:\pdf
Loaded detection model vikp/surya_det3 on device cpu with dtype torch.float32
Loaded detection model vikp/surya_layout3 on device cpu with dtype torch.float32
Loaded reading order model vikp/surya_order on device cpu with dtype torch.float32

Loaded recognition model vikp/surya_rec2 on device cpu with dtype torch.float32
Config of the encoder: <class 'texify.model.model.VariableDonutSwinModel'> is overwritten by shared encoder config: VariableDonutSwinConfig {
"attention_probs_dropout_prob": 0.0,
"depths": [
2,
2,
14,
2
],
"drop_path_rate": 0.1,
"embed_dim": 128,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.0,
"hidden_size": 1024,
"image_size": [
420,
420
],
"initializer_range": 0.02,
"layer_norm_eps": 1e-05,
"mlp_ratio": 4.0,
"model_type": "donut-swin",
"num_channels": 3,
"num_heads": [
4,
8,
16,
32
],
"num_layers": 4,
"patch_size": 4,
"path_norm": true,
"qkv_bias": true,
"transformers_version": "4.46.0",
"use_2d_embeddings": false,
"use_absolute_embeddings": false,
"window_size": 5
}

Config of the decoder: <class 'transformers.models.mbart.modeling_mbart.MBartForCausalLM'> is overwritten by shared decoder config: MBartConfig {
"activation_dropout": 0.0,
"activation_function": "gelu",
"add_cross_attention": true,
"add_final_layer_norm": true,
"attention_dropout": 0.0,
"bos_token_id": 0,
"classifier_dropout": 0.0,
"d_model": 1024,
"decoder_attention_heads": 16,
"decoder_ffn_dim": 4096,
"decoder_layerdrop": 0.0,
"decoder_layers": 8,
"dropout": 0.1,
"encoder_attention_heads": 16,
"encoder_ffn_dim": 4096,
"encoder_layerdrop": 0.0,
"encoder_layers": 12,
"eos_token_id": 2,
"forced_eos_token_id": 2,
"init_std": 0.02,
"is_decoder": true,
"is_encoder_decoder": false,
"max_position_embeddings": 1536,
"model_type": "mbart",
"num_hidden_layers": 12,
"pad_token_id": 1,
"scale_embedding": true,
"tie_word_embeddings": false,
"transformers_version": "4.46.0",
"use_cache": true,
"vocab_size": 50000
}

Loaded texify model to cpu with torch.float32 dtype
Loaded recognition model vikp/surya_tablerec on device cpu with dtype torch.float32
Converting 1 pdfs in chunk 1/1 with 1 processes, and storing in E:\pdf
Detecting bboxes: 100%|██████████████████████████████████████████████████████████████████| 1/1 [00:07<00:00, 7.52s/it]
Detecting bboxes: 100%|██████████████████████████████████████████████████████████████████| 1/1 [00:06<00:00, 6.92s/it]
Finding reading order: 100%|█████████████████████████████████████████████████████████████| 1/1 [00:09<00:00, 9.96s/it]
Recognizing tables: 100%|████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.12s/it]
Recognizing equations: 100%|█████████████████████████████████████████████████████████████| 1/1 [00:03<00:00, 3.43s/it]
Processing PDFs: 100%|██████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.32s/pdf]

@samqin123
Copy link
Author

pip show torch is fine
(surya) E:\marker>pip show torch
Name: torch
Version: 2.5.0
Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration
Home-page: https://pytorch.org/
Author: PyTorch Team
Author-email: [email protected]
License: BSD-3-Clause
Location: c:\programdata\miniconda3\envs\surya\lib\site-packages
Requires: filelock, fsspec, jinja2, networkx, sympy, typing-extensions
Required-by: marker-pdf, surya-ocr, texify

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant