-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
287 lines (231 loc) · 10.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import json
import time
import hydralit_components as hc
import pandas as pd
import plotly.express as px
import snowflake.connector as sf
import streamlit as st
import yfinance as yf
from babel.numbers import format_currency
from openpyxl import Workbook, load_workbook
from streamlit_lottie import st_lottie
from yahooquery import Ticker
from functions import *
def load_lottiefile(filepath: str):
with open(filepath, "r") as f:
return json.load(f)
lottie_analysis = load_lottiefile("lottiefiles/analysis.json")
lottie_hello = load_lottiefile("lottiefiles/hello.json")
st.set_page_config(
page_title="FA",
page_icon="chart_with_upwards_trend",
layout="wide",
initial_sidebar_state="expanded"
)
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
header{visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
# ---Side-Bar----
with st.sidebar:
st_lottie(lottie_hello, loop=True, key=None, height=320, width=320)
st.write('''
Hey 👋🏻there. I am Vidhya Varshany, a sophomore decision science student👩🏻. I enjoy working with data sets and extracting information from them, which qualifies me to be a data analyst🎯. My interests include Data Science and Data Analytics🎗️.
To know more about me . Follow me on
[LinkedIn](https://www.linkedin.com/in/vidhyavarshany/)
[Twitter](https://twitter.com/vidhyavarshany)
''')
st.write("---")
st.write("#### About📍")
st.write('''
This Web App is based on the Beneish model, a mathematical model that uses financial ratios and eight variables to determine whether a company has manipulated earnings. Based on company financial statements, an M-Score is constructed to describe how much earnings have been manipulated.
''')
pd.set_option('mode.chained_assignment', None)
# Fetching the Tickers Module
symbols = ['FB', 'AAPL', 'BRK.B', 'TSLA', 'MCD', 'VZ', 'BA', 'NKE', '^GSPC', 'NQ=F', 'ALB', 'AOS', 'APPS', 'AQB', 'ASPN', 'ATHM', 'AZRE', 'BCYC', 'BGNE', 'CAT', 'CC', 'CLAR', 'CLCT', 'CMBM', 'CMT', 'CRDF', 'CYD', 'DE', 'DKNG', 'EMN', 'FBIO', 'FBRX', 'FCX', 'FLXS', 'FMC', 'FMCI', 'GME',
'GRVY', 'HAIN', 'HBM', 'HIBB', 'IEX', 'IOR', 'GOOGL', 'MAXR', 'MPX', 'MRTX', 'NSTG', 'NVCR', 'NVO', 'OESX', 'PENN', 'PLL', 'PRTK', 'RDY', 'REGI', 'REKR', 'SBE', 'SQM', 'TCON', 'TWTR', 'TGB', 'TRIL', 'UEC', 'VCEL', 'VOXX', 'WIT', 'WKHS', 'XNCR']
# Create Ticker instance, passing symbols as first argument
# Optional asynchronous argument allows for asynchronous requests
tickers = Ticker(symbols, asynchronous=True)
dat = tickers.get_modules("summaryProfile quoteType")
symb = pd.DataFrame.from_dict(dat).T
# flatten dicts within each column, creating new dataframes
dataframes = [pd.json_normalize([x for x in symb[module] if isinstance(
x, dict)]) for module in ['summaryProfile', 'quoteType']]
# concat dataframes from previous step
symb = pd.concat(dataframes, axis=1)
symb = symb[['shortName', 'symbol']].dropna()
symb = symb.sort_values('symbol')
symb.set_index('shortName', inplace=True, drop=True)
symb = symb.reset_index() # reset index
symb.index = symb.index + 1 # add 1 to each index
symb.columns = ['Companies', 'Symbol']
data = symb.copy()
# !IMPORTANT
symb['Companies'] = symb['Companies'].str.replace("'", "''")
# -----Home Page-----
st.title("Analyzing the Quality of Financial Statements using Beneish Model")
with st.container():
left_col, right_col = st.columns((2, 1))
with left_col:
st.dataframe(data)
with right_col:
st_lottie(lottie_analysis, height="300",
width="500", quality="high", key=None)
# -- Input----
ch = st.number_input(
"\n\nEnter your choice from the above listed company: ", value=0)
if ch:
comp = yf.Ticker(symb.at[ch, 'Symbol'])
st.write(
f" #### Company Name - {data.at[ch, 'Companies']}\n #### Symbol - {data.at[ch, 'Symbol']}")
with hc.HyLoader('Now doing loading', hc.Loaders.standard_loaders, index=[3, 0, 5]):
time.sleep(5)
incomeStatement = comp.financials
balanceSheet = comp.balancesheet
cashFlow = comp.cashflow
# Cleaning the data
# Income Statement
incomeStatement = incomeStatement[incomeStatement.columns[0:2]]
incomeStatement.columns = ['2022', '2021']
incomeStatement = incomeStatement.fillna(0).astype(float)
# Balance Sheet
balanceSheet = balanceSheet[balanceSheet.columns[0:2]]
balanceSheet.columns = ['2022', '2021']
balanceSheet = balanceSheet.fillna(0).astype(float)
# Cash Flow
cashFlow = cashFlow[cashFlow.columns[0:2]]
cashFlow.columns = ['2022', '2021']
cashFlow.dropna()
# COGS = Revenue - GrossProfit
cogs22 = incomeStatement.at['Total Revenue', '2022'] - \
incomeStatement.at['Gross Profit', '2022']
cogs21 = incomeStatement.at['Total Revenue', '2021'] - \
incomeStatement.at['Gross Profit', '2021']
# COGS = pd.Series(data={'2022': cogs22, '2021': cogs21},
# name='Cost of Goods Sold')
incomeStatement.loc['Cost of Goods Sold'] = [cogs22, cogs21]
# long term Debt
if('Long Term Debt' not in balanceSheet.index):
ld22 = balanceSheet.at['Total Liab', "2022"] - \
balanceSheet.at['Total Current Liabilities', "2022"] - \
balanceSheet.at['Other Liab', "2022"]
ld21 = balanceSheet.at['Total Liab', "2021"] - \
balanceSheet.at['Total Current Liabilities', "2021"] - \
balanceSheet.at['Other Liab', "2021"]
balanceSheet.loc['Long Term Debt'] = [ld22, ld21]
if('Long Term Investments' not in balanceSheet.index):
li22 = balanceSheet.at['Common Stock', "2022"] + \
balanceSheet.at['Cash', "2022"]
li21 = balanceSheet.at['Common Stock', "2021"] - \
balanceSheet.at['Cash', "2021"]
balanceSheet.loc['Long Term Investments'] = [li22, li21]
# Extracting the statements
df = incomeStatement.loc[["Total Revenue",
"Cost of Goods Sold", "Selling General Administrative", "Net Income From Continuing Ops"]]
df2 = balanceSheet.loc[["Net Receivables",
"Total Current Assets", "Property Plant Equipment", "Long Term Investments", "Total Assets", "Total Current Liabilities", "Long Term Debt"]]
df3 = cashFlow.loc[["Depreciation",
"Total Cash From Operating Activities"]]
data = pd.concat([df, df2, df3])
data = data.reindex(['Total Revenue', 'Cost of Goods Sold', 'Selling General Administrative', 'Depreciation', 'Net Income From Continuing Ops', 'Net Receivables', 'Total Current Assets',
'Property Plant Equipment', 'Long Term Investments', 'Total Assets', 'Total Current Liabilities', 'Long Term Debt', 'Total Cash From Operating Activities'])
data.index = ["Revenue", "Cost of Goods Sold", "Selling, General & Admin.Expense", "Depreciation", "Net Income from Continuing Operations", "Accounts Receivables",
"Current Assets", "Property, Plant & Equipment", "Securities", "Total Assets", "Current Liabilities", "Total Long-term Debt", "Cash Flow from Operations"]
data1 = data.copy()
data1["2022"] = data1["2022"].apply(lambda x: format_currency(
x, format=None, currency="USD", locale="en_US"))
data1["2021"] = data1["2021"].apply(lambda x: format_currency(
x, format=None, currency="USD", locale="en_US"))
# Data Particulars
st.subheader("Data Particulars")
st.dataframe(data1)
# for 1 (index=5) from the standard loader group
with hc.HyLoader('Now doing loading', hc.Loaders.standard_loaders, index=5):
time.sleep(5)
data2 = {
'Financial Ratios Indexes': [
"Day Sales in Receivables Index(DSRI)",
"Gross Margin Index(GMI)",
"Asset Quality Index(AQI)",
"Sales Growth Index(SGI)",
"Depreciation Index(DEPI)",
"Selling, General, & Admin. Expenses Index(SGAI)",
"Leverage Index(LVGI)",
"Total Accruals to Total Assets(TATA)"
],
'Index': [
DSRI(data),
GMI(data),
AQI(data),
SGI(data),
DEPI(data),
SGAI(data),
LVGI(data),
TATA(data)
]
}
ratios = pd.DataFrame(data2)
ratios.set_index('Financial Ratios Indexes', inplace=True, drop=True)
# Financial Ratios
st.write(" ### Financial Ratio Indexes")
st.dataframe(ratios)
# print(type(ratios["Index"]))
temp_ratios = ratios.copy()
temp_ratios.index.name = 'Ratios'
temp_ratios['Ratios'] = temp_ratios.index
temp_ratios = temp_ratios.reset_index(drop=True)
temp_ratios.columns = ['Ratios', 'Index']
# The Line Chart using Plotly
fig = px.line(
temp_ratios, # Data Frame
x="Index", # Columns from the data frame
y="Ratios",
title="Financial Ratio Indexes",
)
fig.update_traces(line_color="blue")
with st.container():
st.plotly_chart(fig)
# Beneish M Score
m_score = BeneishMScore(DSRI(data),
GMI(data),
AQI(data),
SGI(data),
DEPI(data),
SGAI(data),
LVGI(data),
TATA(data))
if(m_score < -2.22):
res = '##### Company is not likely to manipulate their earnings'
st.write(f"##### M- Score = {round(m_score,2)}")
st.write(f"{res}")
# print(res)
else:
res = " ##### Company is not likely to manipulate their earnings"
st.write(f"##### M- Score = {round(m_score,2)}")
st.write(f"{res}")
# SnowFlake Initialize connection.
def init_connection():
return sf.connect(**st.secrets["snowflake"])
conn = init_connection()
cur = conn.cursor()
try:
cur.execute(
f"INSERT INTO FAR.PUBLIC.HISTORY(COMPANY,M_SCORE) VALUES('{symb.at[ch, 'Companies']}',{round(m_score,2)})")
cur.execute('''DELETE FROM FAR.PUBLIC.HISTORY WHERE (COMPANY) in
(SELECT COMPANY FROM FAR.PUBLIC.HISTORY GROUP BY COMPANY HAVING COUNT(COMPANY)> 1)
''')
cur.execute(
'SELECT * FROM FAR.PUBLIC.HISTORY')
history = cur.fetch_pandas_all()
finally:
cur.close()
history.index = history.index + 1
conn.close()
if st.button("View History"):
st.snow()
st.dataframe(history)