-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathrelease.py
executable file
·487 lines (345 loc) · 15 KB
/
release.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#!/usr/bin/env python
import os, datetime, sys
import nesoni
from nesoni import config
def cleanup(text):
lines = text.split('\n')
lines[0] = '<b style="font-size: 125%">'+lines[0].strip()+'</b>'
del lines[1]
return '\n'.join(lines)
VERSION = nesoni.VERSION
README = open('README','rb').read().split('~')
REQUIREMENTS = cleanup(README[1])
INSTALL = cleanup(README[2])
HELP = config.strip_color(nesoni.USAGE).replace('<','<').replace('>','>')
HELP = HELP[:HELP.index('If a pipeline tool is run again')]
PAGE = r"""<!--#include virtual="top.html" -->
<style>
pre { line-height: 100%%; font-size: 100%%; }
.box { background: #eeffee; border: 1px solid #008800; margin: 1em; padding: 1em; float: left; width: 25em; }
h1, h2, h3 { clear: both; }
</style>
<div style="float: left;">
<h2>Nesoni</h2>
<h3>Download</h3>
<div style="float: right; margin: 1em; margin-right: 20%%; border: 2px solid black; padding: 1em; font-size: 150%%;">
<a href="nesoni-cookbook/">Read the Nesoni Cookbook</a>
</div>
<p>%(date)s:
<ul>
<li> <a href="%(release_tarball_name)s">%(release_tarball_name)s</a> </li>
<li> <a href="https://pypi.python.org/pypi/nesoni/">PyPI page</a>
<li> <a href="https://github.com/Victorian-Bioinformatics-Consortium/nesoni">Development version on github</a>
</ul>
<p>Nesoni is free software, released under the GPL (version 2).
<h3>Description</h3>
<p>
Nesoni is a high-throughput sequencing data analysis toolset,
which the VBC has developed to cope with the flood of Illumina,
454, and SOLiD data now being produced.
<p>
Our work is largely with bacterial genomes, and the design tradeoffs
in nesoni reflect this.
<div class="box">
<h3>Alignment to reference</h3>
<p>
Nesoni focusses on analysing the alignment of reads to a reference
genome. We use the SHRiMP read aligner, as it is able to detect
small insertions and deletions in addition to SNPs.
<p>
Nesoni can call a consensus of read alignments, taking care to
indicate ambiguity. This can then be used in various ways: to determine
the protein level changes resulting from SNPs and indels, to find
differences between multiple strains, or to produce n-way comparison data
suitable for phylogenetic analysis in SplitsTree4.
</div>
<div class="box">
<h3>Explore your data in IGV</h3>
<p>
Besides producing BAM files,
Nesoni can produce multi-sample depth of coverage plots for
<a href="http://www.broadinstitute.org/igv/">the IGV browser</a>.
Display and quickly navigate depth of coverage plots from tens of samples
simultaneously, from whole chromosome overview to the individual base level.
<p>
Tracks indicating the presence of read multi-mapping,
locations of 5' and 3' read ends, and total depth are also produced.
</div>
<div class="box">
<h3>Multiple perspectives on expression data</h3>
<p>
Nesoni provides multiple tools for exploring expression data.
Don't just blindly reach into your data and pick out a handful of genes,
actually understand the story your data is telling you.
<ul>
<li>Differential expression testing with limma and edgeR.
Accompanying heatmaps make it easy to understand the tradeoffs of within group and between group variation
that drive these tools.
</li>
<li>Heatmaps with hierarchical clustering.
</li>
<li>Non-negative Matrix Factorization, a fuzzy clustering technique.
</li>
</ul>
</div>
<div class="box">
<h3>Workflow engine</h3>
<p>
Nesoni includes tools that make it easy to write parallel processing pipelines
in Python.
<p>
Pipelines are expressed as Python functions.
The translation of a serial program with for-loops and function calls
into a parallel program requires only simple localized modifications to the code.
<p>
Pipelines expressed in this way are <i>composable</i>, just like ordinary functions.
<p>
Much like <tt>make</tt>, the resultant program will only re-run tools as necessary
if parameters are changed.
The dependancy structure is implicit from the parallel program,
if a tool needs to be re-run,
only things that <i>must</i> execute after that tool also need re-running.
<p>
<a href="https://docs.google.com/document/pub?id=1vt__lbYwnoMGU0m1XTqw4j-H0URez201i9JLLtN_aVA">Further documentation</a>
</p>
</div>
<!--
<div class="box">
<h3>k-mer and De Bruijn graph tools</h3>
<p>
Nesoni also includes some highly experimental tools for working with sets of k-mers and De Bruijn graphs. You can:
<ul>
<li>Produce a 2D layout of a De Bruijn graph, and interact with it: zoom in to examine details, overlay read-pair data, overlay sequences on top of it (for example, to examine the behaviour of a de-novo assembler such as Velvet).
<li>Clip a set of reads to remove low-frequency or high-frequency k-mers, or k-mers where there is a more frequent k-mer differing by one SNP.
</ul>
</div>
-->
<div style="clear: both"/>
<br/><br/>
<div style="float: right; margin: 2em; width: 400px;">
<a href="nesoni_ba2009_poster.pdf"><img src="nesoni_poster.png"></a>
<p><a href="nesoni_ba2009_poster.pdf">This poster</a>, presented at BA2009, describes some of Nesoni's basic capabilities.
</div>
<pre>
%(REQUIREMENTS)s
%(INSTALL)s
</pre>
<h3>Documentation</h3>
<ul>
<li><a href="nesoni-cookbook/">Cookbook</a>
</ul>
<p>
Nesoni provides the following specific usage information when run with no parameters:
<pre>
%(HELP)s
</pre>
<h3>Contact</h3>
<ul>
<li><a href='mailto:[email protected]'>Paul Harrison</a>
<li><a href='mailto:[email protected]'>Torsten Seemann</a>
</ul>
<h3>Older versions</h3>
<ul>
%(OLD)s
</ul>
<p>
</div>
<!--#include virtual="bot.html" -->
"""
FITNOISE_PAGE = r"""<!--#include virtual="top.html" -->
<style>
pre { padding: 1em; margin: 1em; border: 1px solid #888; width: 60em; }
</style>
<h2>Fitnoise</h2>
<div style="float:right; margin-right:2em;">
<a href="documents/Fitnoise-poster-ABiC-October-2014.pdf">
<div style="border: 1px solid black; padding: 1em">
<img width="150"
src="documents/Fitnoise-poster-ABiC-October-2014.png">
</div>
Poster describing Fitnoise
</a>
<br/>presented at <a href="http://bioinformatics.net.au/abic2014/">ABiC 2014</a>
</div>
Fitnoise is R+ software for Empirical Bayesian linear modelling.
It has capabilities very similar to
<a href="http://bioinf.wehi.edu.au/limma/">Limma</a>
but allows parametric noise models with an arbitrary number of parameters.
Parameters are fitted using <a href="https://en.wikipedia.org/wiki/Restricted_maximum_likelihood">REML</a>.
<p>%(date)s, from Nesoni version %(VERSION)s:
<ul>
<li><a href="fitnoise.R">fitnoise.R</a>
</ul>
<p>
fitnoise.R is distributed as part of
<a href="software.nesoni.shtml">Nesoni</a>,
but also works as a standalone R+ module.
<p>
A unique feature of Fitnoise is its ability to
detect differential poly(A) tail length in PAT-Seq data.
See also <a href="software.tail-tools.shtml">Tail Tools</a>.
<h3>Basic usage</h3>
<p>
Say you have a dgelist, mydgelist, and a design matrix mydesign, and a set of coefficients, testcoefs, to test:
<p>
H1 is all columns in the design matrix. H0 is those columns not named in testcoefs.
<p>Run R+ with:
<pre>
OPENBLAS_NUM_THREADS=1 R
</pre>
<p>
...
<pre>
source("fitnoise.R")
# voom from limma to calculate weights
myelist <- voom(mydgelist, mydesign)
myfit <- fit.elist(myelist, mydesign, model=model.t.standard, cores=8)
#examine noise fit
myfit
#produce a toptable-like result data-frame
result <- test.fit(myfit, coefs=testcoefs)
</pre>
<p>
<b>When examining myfit, if the "noise combined p-value" is low this indicates a poor
fit by the noise model.</b> A more accurate noise model may be required.
<h3>Noise models</h3>
<p>
The novel feature of Fitnoise is the availability of different noise models.
Above we used model.t.standard, which performs moderated t tests or F tests similarly to limma.
Available are:
<ul>
<li>model.t.standard, attempts to closely emulate limma.
The weights matrix is used if present in the EList.
<li>model.t.independent, which simply performs independent t tests or F tests.
<li>model.normal.standard, which performs z tests or chi-square tests.
The weights matrix is used if present in the EList.
<li>model.t.patseq and model.normal.patseq, for PAT-Seq poly(A) tail length data.
<li><b>Experiemental:</b> model.t.per.sample.var and model.normal.per.sample.var
fit per-sample variances, similar to arrayWeights in limma.
The weights matrix is used if present in the EList.
Would suggest only using this with an absolute minimum of three samples per group,
or with negative controls (see below).
</ul>
<p>
Writing new noise models is straightforward.
<p>
Fitnoise handles missing data gracefully.
<h3>Use without replicates</h3>
Say mydesign represents a null hypothesis H0.
We seek genes that are outliers given a noise model.
t-distribution based models allow for outliers,
so we instead use a normal-distribution based model.
This is effectively asserting that genes have fixed biological variability.
This is a poor assertion to make.
<pre>
myfit <- fit.elist(myelist, mydesign, model=model.normal.standard, cores=16)
#produce a toptable-like result data-frame based on surprising deviation
#from the noise model in individual genes
result <- test.fit(myfit)
</pre>
<p>
Note how we never specified an alternative hypothesis H1.
<p>
Equivalently, you can call fit.elist with H1 as the design and an extra parameter "noise.design"
giving H0, then call test.fit normally. This will give identical p-values,
and the output will include coefficient estimates.
<p>
This produces a ranking of genes by interest, taking into account uncertainty
in their expression levels. <b>p-values / FDR-values are for ranking purposes only.</b>
This method can not distinguish highly variable genes from truly differentially expressed genes.
Now go and tell your collaborator to produce replicates next time.
<h3>Experimental: negative control features</h3>
<p>
A negative control feature is one in which the noise distribution
is typical, and which is believed to not have been changed by the experiment.
Constitutively expressed housekeeping genes would make good negative controls.
Spiked in RNA would <i>not</i> make good negative controls as they
will not have typical biological noise.
Empirically chosen negative controls
might underestimate or misestimate the noise distribution, use with caution
(eg features chosen from non-significant features from a differential test without negative controls).
<p>
A logical vector of negative control features can be passed to fit.elist
as parameter "controls".
You can also pass your null hypothesis design as "control.design"
(this defaults to a single column of ones).
<p>
Negative controls, if known, allow noise to be fitted more accurately.
For example they may be useful for model.t.per.sample.var if you have few samples.
If the noise model is covariant between samples
with covariance spanning experimental groups,
negative controls are absolutely necessary
(none of the current noise models use this.)
<br/><br/><br/><br/><br/>
<!--#include virtual="bot.html" -->
"""
old = [ ]
for item in os.listdir('/home/websites/vicbioinformatics.com'):
if item.startswith('nesoni-') and item.endswith('.tar.gz'):
old.append(item)
old.sort(key=lambda item:
[ int(item2) if item2.isdigit() else item2 for item2 in item.replace('-','.').split('.') ]
)
OLD = '\n'.join([
'<li><a href="%s">%s</a>' % (item,item) for item in old[::-1]
])
os.environ['PATH'] = '/bio/sw/python/bin:' + os.environ['PATH']
# Force MANIFEST rebuild
os.system('rm MANIFEST')
do_install = 'noinstall' not in sys.argv[1:]
do_upload = 'noupload' not in sys.argv[1:]
do_rebuild = 'rebuild' in sys.argv[1:]
release_tarball_name = 'nesoni-%s.tar.gz' % nesoni.VERSION
if do_upload:
assert 'force' in sys.argv[1:] or not os.path.exists('dist/'+release_tarball_name), release_tarball_name + ' already exists'
def sh(cmd): assert 0 == os.system(cmd)
date = datetime.date.today().strftime('%e %B %Y')
try:
#assert 0 == os.system('cd test && pypy test_nesoni.py')
#assert 0 == os.system('sudo -E /bio/sw/python/bin/pypy setup.py install_scripts --install-dir /bio/sw/python/bin/')
#assert 0 == os.system('sudo -E /bio/sw/python/bin/pypy setup.py install_lib')
#assert 0 == os.system('sudo -E /bio/sw/python/bin/python2.6 setup.py install_lib')
#assert 0 == os.system('sudo pypy setup.py install --home /bio/sw/python')
#assert 0 == os.system('sudo PYTHONPATH=/bio/sw/python/lib/python '
# 'python setup.py install --home /bio/sw/python')
if do_install:
if do_rebuild:
os.system('sudo -H rm -r /bio/sw/python/env-pypy')
sh('sudo -H virtualenv -p /bio/sw/python/download/pypy/bin/pypy /bio/sw/python/env-pypy')
sh('sudo -H ln -s pypy /bio/sw/python/env-pypy/bin/pypy-bio')
sh('sudo -H /bio/sw/python/env-pypy/bin/pip install --upgrade distribute')
sh('sudo -H /bio/sw/python/env-pypy/bin/pip install --upgrade biopython')
sh('sudo -H /bio/sw/python/env-pypy/bin/python setup.py install')
sh('sudo -H /bio/sw/python/env-pypy/bin/pip install --upgrade tail-tools')
if do_rebuild:
os.system('sudo -H rm -r /bio/sw/python/env-python')
sh('sudo -H virtualenv -p python /bio/sw/python/env-python')
sh('sudo -H ln -s python /bio/sw/python/env-python/bin/python-bio')
sh('sudo -H /bio/sw/python/env-python/bin/pip install --upgrade distribute')
sh('sudo -H /bio/sw/python/env-python/bin/pip install --upgrade numpy')
sh('sudo -H /bio/sw/python/env-python/bin/pip install --upgrade matplotlib')
sh('sudo -H /bio/sw/python/env-python/bin/pip install --upgrade biopython')
sh('sudo -H /bio/sw/python/env-python/bin/python setup.py install')
sh('sudo -H /bio/sw/python/env-python/bin/pip install --upgrade tail-tools')
sh('sudo -H R CMD INSTALL --library=/bio/sw/R nesoni/nesoni-r')
os.system('sudo -H rm -r nesoni.egg-info build')
print
print
sh('python setup.py sdist')
sh('cp dist/%s /home/websites/vicbioinformatics.com' % release_tarball_name)
f = open('/home/websites/vicbioinformatics.com/software.nesoni.shtml','wb')
f.write(PAGE % locals())
f.close()
sh('cd doc && make html')
sh('cp -r doc/_build/html/* /home/websites/vicbioinformatics.com/nesoni-cookbook/')
sh('cp nesoni/nesoni-r/R/fitnoise.R /home/websites/vicbioinformatics.com/')
f = open('/home/websites/vicbioinformatics.com/software.fitnoise.shtml','wb')
f.write(FITNOISE_PAGE % locals())
f.close()
#assert os.path.exists(release_tarball_name), release_tarball_name + ' failed to build'
#os.system('rsync -rltvz /opt/python/ msgln1.its.monash.edu.au:opt-python/')
except:
os.system('rm dist/%s' % release_tarball_name)
raise
if do_upload:
os.system('python setup.py sdist upload')