forked from MBB-team/VBA-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVBA_SavageDickey.m
110 lines (99 loc) · 3.44 KB
/
VBA_SavageDickey.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
function [F2,po2] = VBA_SavageDickey(po1,pr1,F1,dim1,pr2)
% computes the free energy and posterior moments of a reduced model
% function [F2,po2] = VBA_SavageDickey(po1,pr1,F1,dim1,pr2)
% This function computes the approximate log model evidence and posterior
% density of a 'reduced' model, which is defined with respect to a 'full'
% model. This reduction is such that some of the non-zero prior variances
% of the full model are now set to zero. This is useful for testing
% assumptions of the form H0: theta=0. See Friston and Penny, 2011.
% IN:
% - po1: posterior structure of the full model. This is typically
% obtained from the inversion of the full model using
% VBA_NLStateSpaceModel.m
% - pr1: prior structure of the full model.
% - F1: free energy of the full model.
% - dim1: dimensions of the full model. Note: the dimensions of the
% reduced model are identical, but some parameters along these dimensions
% are now fixed to their prior mean.
% - pr2: prior structure of the reduced model.
% OUT:
% - F2: free energy of the reduced model.
% - po2: posterior structure of the reduced model. note that the
% posterior structure is obtained without having to invert the reduced
% model...
pr1 = checkPriors(pr1,dim1);
pr2 = checkPriors(pr2,dim1);
F2 = F1;
if dim1.n_theta > 0
mf = po1.muTheta;
Sf = po1.SigmaTheta;
mf0 = pr1.muTheta;
Sf0 = pr1.SigmaTheta;
mr0 = pr2.muTheta;
Sr0 = pr2.SigmaTheta;
[dF,mr,Sr] = spm_log_evidence(mf,Sf,mf0,Sf0,mr0,Sr0);
po2.muTheta = mr;
po2.SigmaTheta = Sr;
F2 = F2 +dF;
end
if dim1.n_phi > 0
mf = po1.muPhi;
Sf = po1.SigmaPhi;
mf0 = pr1.muPhi;
Sf0 = pr1.SigmaPhi;
mr0 = pr2.muPhi;
Sr0 = pr2.SigmaPhi;
[dF,mr,Sr] = spm_log_evidence(mf,Sf,mf0,Sf0,mr0,Sr0);
po2.muPhi = mr;
po2.SigmaPhi = Sr;
F2 = F2 +dF;
end
if dim1.n > 0
mf = po1.muX0;
Sf = po1.SigmaX0;
mf0 = pr1.muX0;
Sf0 = pr1.SigmaX0;
mr0 = pr2.muX0;
Sr0 = pr2.SigmaX0;
[dF,mr,Sr] = spm_log_evidence(mf,Sf,mf0,Sf0,mr0,Sr0);
po2.muX0 = mr;
po2.SigmaX0 = Sr;
F2 = F2 +dF;
end
if isfield(po1,'a_sigma') && ~isempty(po1.a_sigma)
mf = po1.a_sigma./po1.b_sigma;
Sf = po1.a_sigma./(po1.b_sigma.^2);
mf0 = pr1.a_sigma./pr1.b_sigma;
Sf0 = pr1.a_sigma./(pr1.b_sigma.^2);
mr0 = pr2.a_sigma./pr2.b_sigma;
Sr0 = pr2.a_sigma./(pr2.b_sigma.^2);
for iSource = 1:numel(po1.a_sigma)
[dF,mr,Sr] = spm_log_evidence(mf(iSource),Sf(iSource),mf0(iSource),Sf0(iSource),mr0(iSource),Sr0(iSource));
po2.b_sigma(iSource) = mr/Sr;
po2.a_sigma(iSource) = po2.b_sigma(iSource)*mr;
F2 = F2 +dF;
end
end
if isfield(po1,'a_alpha') && ~isempty(po1.a_alpha) && ~isinf(po1.a_alpha)
mf = po1.a_alpha./po1.b_alpha;
Sf = po1.a_alpha./(po1.b_alpha^2);
mf0 = pr1.a_alpha./pr1.b_alpha;
Sf0 = pr1.a_alpha./(pr1.b_alpha^2);
mr0 = pr2.a_alpha./pr2.b_alpha;
Sr0 = pr2.a_alpha./(pr2.b_alpha^2);
[dF,mr,Sr] = spm_log_evidence(mf,Sf,mf0,Sf0,mr0,Sr0);
po2.b_alpha = mr./Sr;
po2.a_alpha = po2.b_alpha.*mr;
F2 = F2 +dF;
end
function priors = checkPriors(priors,dim)
fn = fieldnames(priors);
priors0 = VBA_priors(dim,struct('binomial',0));
fn0 = fieldnames(priors0);
io = ismember(fn0,fn);
ind = find(io==0);
if ~isempty(ind)
for i = 1:length(ind)
eval(['priors.',fn0{ind(i)},'=priors0.',fn0{ind(i)},';',])
end
end