-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpairs_from_retrieval.py
122 lines (104 loc) · 4.54 KB
/
pairs_from_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
from pathlib import Path
from typing import Optional
import h5py
import numpy as np
import torch
import collections.abc as collections
from . import logger
from .utils.parsers import parse_image_lists
from .utils.read_write_model import read_images_binary
from .utils.io import list_h5_names
def parse_names(prefix, names, names_all):
if prefix is not None:
if not isinstance(prefix, str):
prefix = tuple(prefix)
names = [n for n in names_all if n.startswith(prefix)]
if len(names) == 0:
raise ValueError(
f'Could not find any image with the prefix `{prefix}`.')
elif names is not None:
if isinstance(names, (str, Path)):
names = parse_image_lists(names)
elif isinstance(names, collections.Iterable):
names = list(names)
else:
raise ValueError(f'Unknown type of image list: {names}.'
'Provide either a list or a path to a list file.')
else:
names = names_all
return names
def get_descriptors(names, path, name2idx=None, key='global_descriptor'):
if name2idx is None:
with h5py.File(str(path), 'r', libver='latest') as fd:
desc = [fd[n][key].__array__() for n in names]
else:
desc = []
for n in names:
with h5py.File(str(path[name2idx[n]]), 'r', libver='latest') as fd:
desc.append(fd[n][key].__array__())
return torch.from_numpy(np.stack(desc, 0)).float()
def pairs_from_score_matrix(scores: torch.Tensor,
invalid: np.array,
num_select: int,
min_score: Optional[float] = None):
assert scores.shape == invalid.shape
if isinstance(scores, np.ndarray):
scores = torch.from_numpy(scores)
invalid = torch.from_numpy(invalid).to(scores.device)
if min_score is not None:
invalid |= scores < min_score
scores.masked_fill_(invalid, float('-inf'))
topk = torch.topk(scores, num_select, dim=1)
indices = topk.indices.cpu().numpy()
valid = topk.values.isfinite().cpu().numpy()
pairs = []
for i, j in zip(*np.where(valid)):
pairs.append((i, indices[i, j]))
return pairs
def main(descriptors, output, num_matched,
query_prefix=None, query_list=None,
db_prefix=None, db_list=None, db_model=None, db_descriptors=None):
logger.info('Extracting image pairs from a retrieval database.')
# We handle multiple reference feature files.
# We only assume that names are unique among them and map names to files.
if db_descriptors is None:
db_descriptors = descriptors
if isinstance(db_descriptors, (Path, str)):
db_descriptors = [db_descriptors]
name2db = {n: i for i, p in enumerate(db_descriptors)
for n in list_h5_names(p)}
db_names_h5 = list(name2db.keys())
query_names_h5 = list_h5_names(descriptors)
if db_model:
images = read_images_binary(db_model / 'images.bin')
db_names = [i.name for i in images.values()]
else:
db_names = parse_names(db_prefix, db_list, db_names_h5)
if len(db_names) == 0:
raise ValueError('Could not find any database image.')
query_names = parse_names(query_prefix, query_list, query_names_h5)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
db_desc = get_descriptors(db_names, db_descriptors, name2db)
query_desc = get_descriptors(query_names, descriptors)
sim = torch.einsum('id,jd->ij', query_desc.to(device), db_desc.to(device))
# Avoid self-matching
self = np.array(query_names)[:, None] == np.array(db_names)[None]
pairs = pairs_from_score_matrix(sim, self, num_matched, min_score=0)
pairs = [(query_names[i], db_names[j]) for i, j in pairs]
logger.info(f'Found {len(pairs)} pairs.')
with open(output, 'w') as f:
f.write('\n'.join(' '.join([i, j]) for i, j in pairs))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--descriptors', type=Path, required=True)
parser.add_argument('--output', type=Path, required=True)
parser.add_argument('--num_matched', type=int, required=True)
parser.add_argument('--query_prefix', type=str, nargs='+')
parser.add_argument('--query_list', type=Path)
parser.add_argument('--db_prefix', type=str, nargs='+')
parser.add_argument('--db_list', type=Path)
parser.add_argument('--db_model', type=Path)
parser.add_argument('--db_descriptors', type=Path)
args = parser.parse_args()
main(**args.__dict__)