-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdog.py
115 lines (99 loc) · 4.35 KB
/
dog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import kornia
from kornia.feature.laf import (
laf_from_center_scale_ori, extract_patches_from_pyramid)
import numpy as np
import torch
import pycolmap
from ..utils.base_model import BaseModel
EPS = 1e-6
def sift_to_rootsift(x):
x = x / (np.linalg.norm(x, ord=1, axis=-1, keepdims=True) + EPS)
x = np.sqrt(x.clip(min=EPS))
x = x / (np.linalg.norm(x, axis=-1, keepdims=True) + EPS)
return x
class DoG(BaseModel):
default_conf = {
'options': {
'first_octave': 0,
'peak_threshold': 0.01,
},
'descriptor': 'rootsift',
'max_keypoints': -1,
'patch_size': 32,
'mr_size': 12,
}
required_inputs = ['image']
detection_noise = 1.0
max_batch_size = 1024
def _init(self, conf):
if conf['descriptor'] == 'sosnet':
self.describe = kornia.feature.SOSNet(pretrained=True)
elif conf['descriptor'] == 'hardnet':
self.describe = kornia.feature.HardNet(pretrained=True)
elif conf['descriptor'] not in ['sift', 'rootsift']:
raise ValueError(f'Unknown descriptor: {conf["descriptor"]}')
self.sift = None # lazily instantiated on the first image
self.dummy_param = torch.nn.Parameter(torch.empty(0))
def _forward(self, data):
image = data['image']
image_np = image.cpu().numpy()[0, 0]
assert image.shape[1] == 1
assert image_np.min() >= -EPS and image_np.max() <= 1 + EPS
if self.sift is None:
device = self.dummy_param.device
use_gpu = pycolmap.has_cuda and device.type == 'cuda'
options = {**self.conf['options']}
if self.conf['descriptor'] == 'rootsift':
options['normalization'] = pycolmap.Normalization.L1_ROOT
else:
options['normalization'] = pycolmap.Normalization.L2
self.sift = pycolmap.Sift(
options=pycolmap.SiftExtractionOptions(options),
device=getattr(pycolmap.Device, 'cuda' if use_gpu else 'cpu'))
keypoints, scores, descriptors = self.sift.extract(image_np)
scales = keypoints[:, 2]
oris = np.rad2deg(keypoints[:, 3])
if self.conf['descriptor'] in ['sift', 'rootsift']:
# We still renormalize because COLMAP does not normalize well,
# maybe due to numerical errors
if self.conf['descriptor'] == 'rootsift':
descriptors = sift_to_rootsift(descriptors)
descriptors = torch.from_numpy(descriptors)
elif self.conf['descriptor'] in ('sosnet', 'hardnet'):
center = keypoints[:, :2] + 0.5
laf_scale = scales * self.conf['mr_size'] / 2
laf_ori = -oris
lafs = laf_from_center_scale_ori(
torch.from_numpy(center)[None],
torch.from_numpy(laf_scale)[None, :, None, None],
torch.from_numpy(laf_ori)[None, :, None]).to(image.device)
patches = extract_patches_from_pyramid(
image, lafs, PS=self.conf['patch_size'])[0]
descriptors = patches.new_zeros((len(patches), 128))
if len(patches) > 0:
for start_idx in range(0, len(patches), self.max_batch_size):
end_idx = min(len(patches), start_idx+self.max_batch_size)
descriptors[start_idx:end_idx] = self.describe(
patches[start_idx:end_idx])
else:
raise ValueError(f'Unknown descriptor: {self.conf["descriptor"]}')
keypoints = torch.from_numpy(keypoints[:, :2]) # keep only x, y
scales = torch.from_numpy(scales)
oris = torch.from_numpy(oris)
scores = torch.from_numpy(scores)
if self.conf['max_keypoints'] != -1:
# TODO: check that the scores from PyCOLMAP are 100% correct,
# follow https://github.com/mihaidusmanu/pycolmap/issues/8
indices = torch.topk(scores, self.conf['max_keypoints'])
keypoints = keypoints[indices]
scales = scales[indices]
oris = oris[indices]
scores = scores[indices]
descriptors = descriptors[indices]
return {
'keypoints': keypoints[None],
'scales': scales[None],
'oris': oris[None],
'scores': scores[None],
'descriptors': descriptors.T[None],
}