-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdir.py
77 lines (65 loc) · 2.56 KB
/
dir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import sys
from pathlib import Path
import torch
from zipfile import ZipFile
import os
import sklearn
import gdown
from ..utils.base_model import BaseModel
sys.path.append(str(
Path(__file__).parent / '../../third_party/deep-image-retrieval'))
os.environ['DB_ROOT'] = '' # required by dirtorch
from dirtorch.utils import common # noqa: E402
from dirtorch.extract_features import load_model # noqa: E402
# The DIR model checkpoints (pickle files) include sklearn.decomposition.pca,
# which has been deprecated in sklearn v0.24
# and must be explicitly imported with `from sklearn.decomposition import PCA`.
# This is a hacky workaround to maintain forward compatibility.
sys.modules['sklearn.decomposition.pca'] = sklearn.decomposition._pca
class DIR(BaseModel):
default_conf = {
'model_name': 'Resnet-101-AP-GeM',
'whiten_name': 'Landmarks_clean',
'whiten_params': {
'whitenp': 0.25,
'whitenv': None,
'whitenm': 1.0,
},
'pooling': 'gem',
'gemp': 3,
}
required_inputs = ['image']
dir_models = {
'Resnet-101-AP-GeM': 'https://docs.google.com/uc?export=download&id=1UWJGDuHtzaQdFhSMojoYVQjmCXhIwVvy',
}
def _init(self, conf):
checkpoint = Path(
torch.hub.get_dir(), 'dirtorch', conf['model_name'] + '.pt')
if not checkpoint.exists():
checkpoint.parent.mkdir(exist_ok=True, parents=True)
link = self.dir_models[conf['model_name']]
gdown.download(str(link), str(checkpoint)+'.zip', quiet=False)
zf = ZipFile(str(checkpoint)+'.zip', 'r')
zf.extractall(checkpoint.parent)
zf.close()
os.remove(str(checkpoint)+'.zip')
self.net = load_model(checkpoint, False) # first load on CPU
if conf['whiten_name']:
assert conf['whiten_name'] in self.net.pca
def _forward(self, data):
image = data['image']
assert image.shape[1] == 3
mean = self.net.preprocess['mean']
std = self.net.preprocess['std']
image = image - image.new_tensor(mean)[:, None, None]
image = image / image.new_tensor(std)[:, None, None]
desc = self.net(image)
desc = desc.unsqueeze(0) # batch dimension
if self.conf['whiten_name']:
pca = self.net.pca[self.conf['whiten_name']]
desc = common.whiten_features(
desc.cpu().numpy(), pca, **self.conf['whiten_params'])
desc = torch.from_numpy(desc)
return {
'global_descriptor': desc,
}