-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupervision.py
235 lines (190 loc) · 9.02 KB
/
supervision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from math import log
from loguru import logger
import torch
from einops import repeat
from kornia.utils import create_meshgrid
from .geometry import warp_kpts, warp_kpts_chd
############## ↓ Coarse-Level supervision ↓ ##############
@torch.no_grad()
def mask_pts_at_padded_regions(grid_pt, mask):
"""For megadepth dataset, zero-padding exists in images"""
mask = repeat(mask, 'n h w -> n (h w) c', c=2)
grid_pt[~mask.bool()] = 0
return grid_pt
@torch.no_grad()
def spvs_coarse(data, config):
"""
Update:
data (dict): {
"conf_matrix_gt": [N, hw0, hw1],
'spv_b_ids': [M]
'spv_i_ids': [M]
'spv_j_ids': [M]
'spv_w_pt0_i': [N, hw0, 2], in original image resolution
'spv_pt1_i': [N, hw1, 2], in original image resolution
}
NOTE:
- for scannet dataset, there're 3 kinds of resolution {i, c, f}
- for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f}
"""
# 1. misc
device = data['image0'].device
N, _, H0, W0 = data['image0'].shape
_, _, H1, W1 = data['image1'].shape
scale = config['LOFTR']['RESOLUTION'][0]
scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale
scale1 = scale * data['scale1'][:, None] if 'scale1' in data else scale
h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1])
# print(data['pair_names'])
# print("h0, w0, h1, w1", h0, w0, h1, w1)
# print("H0, W0, H1, W1", H0, W0, H1, W1)
try:
compensate_height_diff = data['compensate_height_diff'][0]# config['TRAINER']['COMPENSATE_HEIGHT_DIFF']
except:
compensate_height_diff = False
# 2. warp grids
# create kpts in meshgrid and resize them to image resolution
grid_pt0_c = create_meshgrid(h0, w0, False, device).reshape(1, h0*w0, 2).repeat(N, 1, 1) # [N, hw, 2]
grid_pt0_i = scale0 * grid_pt0_c
grid_pt1_c = create_meshgrid(h1, w1, False, device).reshape(1, h1*w1, 2).repeat(N, 1, 1)
grid_pt1_i = scale1 * grid_pt1_c
# print("data['T_0to1']", data['T_0to1'])
# print("grid_pt0_c", grid_pt0_c)
# mask padded region to (0, 0), so no need to manually mask conf_matrix_gt
if 'mask0' in data:
grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data['mask0'])
grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data['mask1'])
# warp kpts bi-directionally and resize them to coarse-level resolution
# (no depth consistency check, since it leads to worse results experimentally)
# (unhandled edge case: points with 0-depth will be warped to the left-up corner)
if not compensate_height_diff:
_, w_pt0_i = warp_kpts(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1'])
_, w_pt1_i = warp_kpts(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0'])
else:
_, w_pt0_i = warp_kpts_chd(grid_pt0_i, data['depth0'], data['depth1'], data['height_map0'], data['height_map_info0'], data['T0'], data['T1'], data['K0'], data['K1'])
_, w_pt1_i = warp_kpts_chd(grid_pt1_i, data['depth1'], data['depth0'], data['height_map1'], data['height_map_info1'], data['T1'], data['T0'], data['K1'], data['K0'])
# _, w_pt0_i = warp_kpts_chd(grid_pt0_i, data['depth0'], data['depth1'], data['height_map0'], data['T0'], data['T1'], data['K0'], data['K1'])
# _, w_pt1_i = warp_kpts_chd(grid_pt1_i, data['depth1'], data['depth0'], data['height_map1'], data['T1'], data['T0'], data['K1'], data['K0'])
w_pt0_c = w_pt0_i / scale1
w_pt1_c = w_pt1_i / scale0
# 3. check if mutual nearest neighbor
w_pt0_c_round = w_pt0_c[:, :, :].round().long()
# print("w_pt0_c_round", w_pt0_c_round)
nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1
# print("nearest_index1", nearest_index1)
w_pt1_c_round = w_pt1_c[:, :, :].round().long()
nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0
# corner case: out of boundary
def out_bound_mask(pt, w, h):
return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0
nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0
loop_back = torch.stack([nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0)
# print("loop_back", loop_back)
correct_0to1 = loop_back == torch.arange(h0*w0, device=device)[None].repeat(N, 1)
correct_0to1[:, 0] = False # ignore the top-left corner
# print("correct_0to1", correct_0to1)
# print("____________________________")
# 4. construct a gt conf_matrix
conf_matrix_gt = torch.zeros(N, h0*w0, h1*w1, device=device)
b_ids, i_ids = torch.where(correct_0to1 != 0)
j_ids = nearest_index1[b_ids, i_ids]
conf_matrix_gt[b_ids, i_ids, j_ids] = 1
data.update({'conf_matrix_gt': conf_matrix_gt})
# print("conf_matrix_gt.shape", conf_matrix_gt.shape)
# print("conf_matrix_gt", torch.sum(conf_matrix_gt))
# print("-----------------------------")
# 5. save coarse matches(gt) for training fine level
if len(b_ids) == 0:
logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}")
# this won't affect fine-level loss calculation
b_ids = torch.tensor([0], device=device)
i_ids = torch.tensor([0], device=device)
j_ids = torch.tensor([0], device=device)
data.update({
'spv_b_ids': b_ids,
'spv_i_ids': i_ids,
'spv_j_ids': j_ids
})
# 6. save intermediate results (for fast fine-level computation)
data.update({
'spv_w_pt0_i': w_pt0_i,
'spv_pt1_i': grid_pt1_i
})
# print("spv_w_pt0_i", w_pt0_i.shape)
# # print("spv_w_pt0_i", w_pt0_i)
# print("spv_pt1_i", grid_pt1_i.shape)
# # print("spv_pt1_i", grid_pt1_i)
# print("i_ids", i_ids.shape)
# print("i_ids", i_ids)
# print("j_ids", j_ids.shape)
# print("j_ids", j_ids)
# print("_________________________________")
def compute_supervision_coarse(data, config):
assert len(set(data['dataset_name'])) == 1, "Do not support mixed datasets training!"
data_source = data['dataset_name'][0]
if data_source.lower() in ['scannet', 'megadepth', 'crop']:
spvs_coarse(data, config)
else:
raise ValueError(f'Unknown data source: {data_source}')
# return visualize_coarse_matches(data)
############## ↓ Fine-Level supervision ↓ ##############
@torch.no_grad()
def spvs_fine(data, config):
"""
Update:
data (dict):{
"expec_f_gt": [M, 2]}
"""
# 1. misc
# w_pt0_i, pt1_i = data.pop('spv_w_pt0_i'), data.pop('spv_pt1_i')
w_pt0_i, pt1_i = data['spv_w_pt0_i'], data['spv_pt1_i']
scale = config['LOFTR']['RESOLUTION'][1]
radius = config['LOFTR']['FINE_WINDOW_SIZE'] // 2
# 2. get coarse prediction
b_ids, i_ids, j_ids = data['b_ids'], data['i_ids'], data['j_ids']
# 3. compute gt
scale = scale * data['scale1'][b_ids] if 'scale0' in data else scale
# `expec_f_gt` might exceed the window, i.e. abs(*) > 1, which would be filtered later
expec_f_gt = (w_pt0_i[b_ids, i_ids] - pt1_i[b_ids, j_ids]) / scale / radius # [M, 2]
data.update({"expec_f_gt": expec_f_gt})
def compute_supervision_fine(data, config):
data_source = data['dataset_name'][0]
if data_source.lower() in ['scannet', 'megadepth', 'crop']:
spvs_fine(data, config)
else:
raise NotImplementedError
import matplotlib.pyplot as plt
import matplotlib.lines as lines
# def visualize_coarse_matches(data):
# conf_matrix_gt = data['conf_matrix_gt']
# spv_w_pt0_i = data['spv_w_pt0_i']
# spv_pt1_i = data['spv_pt1_i']
# img0 = data['image0'].squeeze().cpu()
# img1 = data['image1'].squeeze().cpu()
# mkpts0 = spv_w_pt0_i[data['spv_b_ids'], data['spv_i_ids']].cpu().numpy()
# mkpts1 = spv_pt1_i[data['spv_b_ids'], data['spv_j_ids']].cpu().numpy()
# fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=75)
# axes[0].imshow(img0, cmap='gray')
# axes[1].imshow(img1, cmap='gray')
# for i in range(2): # clear all frames
# axes[i].get_yaxis().set_ticks([])
# axes[i].get_xaxis().set_ticks([])
# for spine in axes[i].spines.values():
# spine.set_visible(False)
# color = 'r' # Color for lines and scatter points
# fig.canvas.draw()
# transFigure = fig.transFigure.inverted()
# fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
# fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
# lines_list = [lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]),
# transform=fig.transFigure, c=color, linewidth=1)
# for i in range(len(mkpts0))]
# for line in lines_list:
# fig.lines.append(line)
# axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4)
# axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4)
# # Save the figure to a tensor
# fig.canvas.draw()
# plt.close(fig)
# return fig