-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
70 lines (57 loc) · 2.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright (c) 2021, ETHZ V4RL. All rights reserved.
# Licensed under the BSD 3-Clause License.
import argparse
import configparser
import os
import numpy as np
from diffuser.dataloader import DataLoader
from diffuser.datasets.builder import build_dataset
from diffuser.diffuser import Diffuser
from diffuser.output import save_data_array, visualize_3d_segmentation
def main():
# Load config parameters
parser = argparse.ArgumentParser()
parser.add_argument("config", help="Path to config file")
args = parser.parse_args()
config = configparser.ConfigParser(
interpolation=configparser.ExtendedInterpolation())
config.read(args.config)
# Initialization
dataset_config = config['dataset']
dataset = build_dataset(
dataset_config.get('dataset_name'),
dataset_config.get('dataset_dir'),
dataset_config.get('img_labels_dir'),
dataset_config.get('label_taxonomy'),
dataset_config.get('img_labels_suffix', fallback='.png'),
dataset_config.get('img_labels_mapping', fallback=None))
dataloader_config = config['dataloader']
dataloader = DataLoader(
dataset,
dataloader_config.getint('img_step'),
dataloader_config.getfloat('pcloud_voxel_size'),
dataloader_config.getfloat('pcloud_normals_radius'),
dataloader_config.getint('pcloud_normals_max_nn'))
diffuser_config = config['diffuser']
diffuser = Diffuser(
diffuser_config.getint('num_pt_neighbors'),
diffuser_config.getfloat('distance_mu'),
diffuser_config.getfloat('normals_mu'),
diffuser_config.getfloat('px_to_pt_weight'))
# Execution
points, normals = dataloader.point_cloud()
frames = dataloader.frames()
labels, _ = diffuser.run(
points, normals, frames, dataset.num_classes,
max_iters=diffuser_config.getint('max_iters'))
# Output
experiment_config = config['experiment']
output_dir = experiment_config.get('output_dir')
experiment_name = experiment_config.get('experiment_name')
output_npy = os.path.join(output_dir, experiment_name + ".npy")
save_data_array(np.column_stack((points, labels)), output_npy)
output_ply = os.path.join(output_dir, experiment_name + ".ply")
visualize_3d_segmentation(points, labels, dataset.label_taxonomy,
save_as=output_ply)
if __name__ == '__main__':
main()